
1

2

Subject-specific Examination Regulations for Computer Science (Fachspezifische Prüfungsordnung)

The subject-specific examination regulations for Computer Science are defined by this program
handbook and are valid only in combination with the General Examination Regulations for
Undergraduate degree programs (General Examination Regulations = Rahmenprüfungsordnung). This
handbook also contains the program-specific Study and Examination Plan (Chapter 6).

Upon graduation, students in this program will receive a Bachelor of Science (BSc) degree with a scope
of 180 ECTS (for specifics see Chapter 4 of this handbook).

Version Valid as of Decision Details

Fall 2025 – V1

Sep 01, 2025

Apr 26, 2023

Substantial change approved
by the Academic Senate

Jun 26, 2019 Originally approved by
Academic Senate

3

Contents
1 Program Overview ... 6

1.1 Concept ... 6

 The Constructor University Educational Concept ... 6

 Program Concept ... 6

1.2 Specific Advantages of Computer Science at Constructor University 7

1.3 Program-Specific Educational Aims ... 8

 Qualification Aims ... 8

 Intended Learning Outcomes .. 9

1.4 Career Options and Support ... 9

1.5 Admission Requirements.. 10

1.6 More Information and contacts ... 11

2 The Curricular Structure ... 12

2.1 General .. 12

2.2 The Constructor University 4C Model .. 12

 Year 1 – CHOICE ... 12

 Year 2 – CORE .. 13

 Year 3 – CAREER .. 15

2.3 The CONSTRUCTOR Track ... 18

 Methods Modules ... 18

 New Skills Modules .. 18

 German Language and Humanities Modules .. 19

3 Computer Science as a Minor ... 20

3.1 Qualification Aims .. 20

 Intended Learning Outcomes .. 20

3.2 Module Requirements .. 20

3.3 Degree ... 20

4 Computer Science Undergraduate Program Regulations ... 21

4.1 Scope of these Regulations .. 21

4.2 Degree ... 21

4.3 Graduation Requirements .. 21

5 Schematic Study Plan for Computer Science ... 22

6 Study and Examination Plan ... 23

1.1.1

1.1.2

1.3.1

1.3.2

2.2.1

2.2.2

2.2.3

2.3.1

2.3.2

2.3.3

3.1.1

4

7 Computer Science Modules .. 25

7.1 Programming in C and C++ .. 25

7.2 Algorithms and Data Structures .. 28

7.3 Mathematical Foundations of Computer Science ... 30

7.4 Digital Systems and Computer Architecture ... 33

7.5 Development in JVM Languages ... 36

7.6 Databases .. 39

7.7 Software Engineering .. 42

7.8 Operating Systems... 44

7.9 Machine Learning .. 47

7.10 Functional Programming ... 49

7.11 Automata, Computability, and Complexity ... 52

7.12 Legal and Ethical Aspects of Computer Science .. 54

7.13 Academic Skills in Computer Science .. 56

7.14 Computer Networks .. 58

7.15 Secure and Dependable Systems .. 61

7.16 Security Monitoring and Incident Response ... 63

7.17 Ethical Hacking and Offensive Security ... 65

7.18 Advanced Operating Systems .. 68

7.19 Linux Kernel Internals .. 71

7.20 Computer Graphics .. 74

7.21 Image Processing ... 76

7.22 Distributed Algorithms .. 78

7.23 Web Application Development ... 80

7.24 Computer Vision .. 82

7.25 Human Computer Interaction ... 84

7.26 Artificial Intelligence .. 86

7.27 Robotics ... 88

7.28 Digital Design ... 91

7.29 Information Theory ... 93

7.30 Internship / Startup and Career Skills ... 96

7.31 Bachelor Thesis and Seminar CS .. 100

8 Constructor Track Modules ... 103

8.1 Methods Modules ... 103

 Elements of Linear Algebra ... 103 8.1.1

5

 Elements of Calculus.. 106

 Probability and Random Processes ... 109

 Statistics and Data Analytics .. 112

 Numerical Methods ... 114

 Matrix Algebra and Advanced Calculus I ... 117

 Matrix Algebra and Advanced Calculus II .. 120

8.2 New Skills ... 123

 Logic (perspective I) ... 123

 Logic (perspective II) .. 126

 Causation and Correlation (perspective I) ... 128

 Causation and Correlation (perspective II) .. 131

 Linear Model and Matrices.. 134

 Complex Problem Solving .. 137

 Argumentation, Data Visualization and Communication (perspective I) 140

 Argumentation, Data Visualization and Communication (perspective II) 143

 Agency, Leadership, and Accountability.. 146

 Community Impact Project .. 149

8.3 Language and Humanities Modules .. 151

 Languages .. 151

 Humanities .. 152

9 Appendix .. 158

9.1 Intended Learning Outcomes Assessment-Matrix .. 158

8.1.2

8.1.3

8.1.4

8.1.5

8.1.6

8.1.7

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.2.8

8.2.9

8.2.10

8.3.1

8.3.2

6

1 Program Overview

1.1 Concept

 The Constructor University Educational Concept

Constructor University aims to educate students for both an academic and a professional career by
emphasizing three core objectives: academic excellence, personal development, and employability to
succeed in the working world. Constructor University offers an excellent research driven education
experience across disciplines to prepare students for graduate education as well as career success by
combining disciplinary depth and interdisciplinary breadth with supplemental skills education and
extra-curricular elements. Through a multi-disciplinary, holistic approach and exposure to cutting-edge
technologies and challenges, Constructor University develops and enables the academic excellence,
intellectual competences, societal engagement, professional and scientific skills of tomorrows leaders
for a sustainable and peaceful future.

In this context, it is Constructor University’s aim to educate talented young people from all over the
world, regardless of nationality, religion, and material circumstances, to become citizens of the world
who are able to take responsible roles for the democratic, peaceful, and sustainable development of
the societies in which they live. This is achieved through high-quality teaching as well as manageable
study loads and supportive study conditions. Study programs and related study abroad programs
convey academic knowledge as well as the ability to interact positively with other individuals and
groups in culturally diverse environments. The ability to succeed in the working world is a core
objective for all study programs at Constructor University, both in terms of actual disciplinary subject
matter and also to the social skills and intercultural competence. Study-program-specific modules and
additional specializations provide the necessary depth, interdisciplinary offerings and the minor option
provide breadth while the university-wide general foundation and methods modules, optional German
language and Humanities modules, and an extended internship period strengthen the employability
of students. The concept of living and learning together on an international campus with many cultural
and social activities supplements students’ education. In addition, Constructor University offers
professional advising and counseling.

Constructor University’s educational concept is highly regarded both nationally and internationally.
While the university has consistently achieved top marks over the last decade in Germany’s most
comprehensive and detailed university ranking by the Center for Higher Education (CHE), it has also
been listed by one of the most widely observed university rankings, the Times Higher Education (THE)
ranking. More details on the current ranking positions can be found at
https://constructor.university/more/about-us.

 Program Concept

Computer Science lies at the core of all modern industries and plays a major role in most areas of
science as well. Computer technology changes constantly, but the fundamental principles underlying
these technologies have now developed into a mature science. The Computer Science Bachelor of
Science program at Constructor University focuses on the understanding of these principles and their
application in practice.

Students will obtain core computer science competencies and skills (e.g., programming and software
engineering) and they will learn about fundamental abstractions and abstract notions of computing

1.1.1

1.1.2

https://constructor.university/more/about-us

7

(e.g., formal languages, logic, and computability theory). They will learn about the principles behind
and the proper usage of core technologies (e.g., databases, operating systems, and computer
networks). Finally, students will develop an understanding of the limitations of technology and side
effects of computing systems (e.g., security, dependability, legal, and ethical aspects). Because
computer science is rooted in mathematics, students will take mathematical methods modules
covering calculus, linear algebra, probability theory, and numerical methods or statistics.

The job market for computer scientists has been very favorable in the last few years, and there is no
indication that this will change in the near future. Because of the rapid changes in the field, it is
important to focus the education on the fundamental principles, as well as, subfields of promising
future relevance. Cross-disciplinary breadth and flexibility, as well as social and work organization skills
are increasingly important. The minor option allows the combination of the education in computer
science with a different discipline, thereby facilitating a cross-disciplinary specialization. The academic
qualifications and personal profiles for academic and industrial careers differ. Constructor University's
Computer Science program responds to the needs of both areas by offering a Computer Science major
designed for students who plan to work in the information technology industry or join graduate
programs related to the discipline. Students choosing the minor option can acquire basic skills in a
specific application domain, which makes them very well suited to work in a specific industrial sector.
The minor option can also be used to obtain specific knowledge in a closely related discipline to
develop a strong portfolio of knowledge at the intersection of computer science with related
disciplines.

1.2 Specific Advantages of Computer Science at Constructor University

The Computer Science program at Constructor University aims to be rigorous with respect to the
foundations, while at the same time being very contemporary with an international orientation.

• The educational approach of the faculty is to relate the theoretical contents of the discipline
to their contemporary application in industry and research. The instructors aim to include
recent developments of the topics covered to demonstrate how basic methods or techniques
are applied today and how the material covered relates to research challenges.

• Early involvement in research projects is an essential aspect of student education. Students
can obtain a vivid research experience at a very early stage, which often develops into
interdisciplinary collaborations later.

• This distinctive educational approach, together with the positive teaching environment, has
been acknowledged in several rankings: In the computer science ranking published by the
Centre for Higher Education (CHE) in 2015, the support by instructors and the relationship to
research were ranked 1st of 68 study programs. In the European U-Multirank ranking published
in 2018, the overall learning experience in computer science was ranked 10th and research-
oriented teaching in computer science was ranked 2nd of 304 European universities offering
Computer Science programs.

• The involvement of students and alumni in the program development process using a direct
and open dialogue ensures that the program is constantly fine-tuned to the specific needs of
students, such as covering certain topics at a certain time with respect to the preparation of
internship or job applications.

• Student teams participate regularly in international programming competitions. Constructor
University hosted the Northwestern European Regional Contest (NWERC) of the ACM
International Collegiate Programming Contest on campus in 2010 and 2011. Student teams

8

have participated in NWERC competitions since then on an annual basis. In 2014, students
organized the first JacobsHack! hackathon on campus, which was sponsored, among others,
by Google, Microsoft, and SAP. The 2018 edition of JacobsHack!, sponsored, among others, by
Facebook, Skyscanner, GitHub and Bloomberg, attracted participants from all over Europe.
More recently, students participated in a Causal Machine Learning Hackathon sponsored by
BMW and Constructor University in 2024.

1.3 Program-Specific Educational Aims

 Qualification Aims

The main subject-specific qualification aim is to enable students to take up qualified employment in
modern industries involving information technology or to enter graduate programs related to
computer science. Graduates of the Computer Science program have obtained the following
competencies:

• Computer science competence
Graduates are familiar with the theoretical foundations of computer science, and they are able
to design and develop computer systems addressing a given application scenario. They are able
to analyze and structure complex problems and they are able to address them using methods
of computer science. Graduates are able to construct and maintain complex computer systems
using a structured, analytic, and creative approach.

• Communication competence
Graduates are able to communicate subject-specific topics convincingly in both spoken and
written form to fellow computer scientists or to customers.

• Teamwork and project management competence
Graduates are able to work effectively in a team, and they are able to organize workflows in
complex development efforts. They are familiar with tools that support the development,
testing, and maintenance of large software systems and they are able to take design decisions
in a constructive way.

• Learning competence
Graduates have acquired a solid foundation enabling them to assess their own knowledge and
skills, learn effectively, and remain up to date with the latest developments in the rapidly
evolving field of computer science.

• Personal and professional competence
Graduates are able to develop a professional profile, justify professional decisions based on
theoretical and methodical knowledge, and critically reflect on their behavior with respect to
their consequences for society.

The design of the Computer Science program follows national guidelines published by the Gesellschaft
für Informatik (GI) (GI: Empfehlungen für Bachelor- und Masterprogramme im Studienfach Informatik
an Hochschulen, July 2016) and international guidelines published jointly by the Association for
Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE) (ACM/IEEE:
Computer Science Curricula 2013, December 2013).

1.3.1

9

 Intended Learning Outcomes

By the end of the program, students will be able to

1. work professionally in the highly dynamic computer science field and enter graduate programs
related to computer science;

2. apply fundamental concepts of computer science while solving problems;
3. think in an analytical way at multiple levels of abstraction;
4. develop, analyze and implement algorithms using modern software engineering methods;
5. understand the characteristics of a range of computing platforms and their advantages and

limitations;
6. choose from multiple programming paradigms, languages and algorithms to solve a given

problem adequately;
7. describe the fundamental theory of computation and computability;
8. apply the necessary mathematical methods;
9. recognize the context in which computer systems operate, including interactions with people

and the physical world;
10. describe the state of published knowledge in their field or a specialization within it;
11. analyze and model real-life scenarios in organizations and industries using contemporary

techniques of computer science, also taking methods and insights of other disciplines into
account;

12. appropriately communicate solutions of problems in computer science in both spoken and
written form to specialists and non-specialists;

13. draw scientifically founded conclusions that consider social, professional, scientific, and ethical
aspects;

14. work effectively in a diverse team and take responsibility in a team;
15. take responsibility for their own learning, personal and professional development and role in

society, reflecting on their practice and evaluating critical feedback;
16. adhere to and defend ethical, scientific, and professional standards.

1.4 Career Options and Support

Computer science is one of the key disciplines of the 21st century, which affects almost all modern
industries. Consequently, the possible career paths are very broad for graduates with a computer
science degree and the job market is highly favorable. The job market includes jobs such as software
engineer, system integrator, information systems manager, data analyst, database administrator,
application developer, cyber security analyst, IT consultant, and system analyst.

Graduates of the Computer Science program at Constructor University have obtained positions in
companies of the information technology sector such as Amazon, Cleversoft, Facebook, Google,
Microsoft, SAP, Skype, 360 Treasury Systems, Twitter, Research Gate, and VMware, as well as within
companies that use information technology extensively such as the BMW Group, Deutsche Bank,
KPMG, and Uber. Some graduates have founded their own companies such as Deep Web Solutions
GmbH, Take Off Labs, and techOS GmbH.

Past graduates have also chosen to continue their education by enrolling into graduate programs at
other German universities such as the RWTH Aachen, the Technical University Berlin, and the Technical
University München; at other European universities such as the University of Amsterdam, the
University of Cambridge, EPFL Lausanne, the University College London, the University of Oxford, and

1.3.2

10

ETH Zürich; or at international universities such as Carnegie Mellon University, Cornell University, and
the University of Montreal.

The Career Service Center (CSC) helps students in their career development. It provides students with
high-quality training and coaching in CV creation, cover letter formulation, interview preparation,
effective presenting, business etiquette, and employer research as well as in many other aspects, thus
helping students identify and follow up on rewarding careers after graduating from Constructor
University. Furthermore, the Alumni Office helps students establish a long-lasting and worldwide
network which provides support when exploring job options in academia, industry, and elsewhere.

1.5 Admission Requirements

Admission to Constructor University is selective and based on a candidate’s school and/or university
achievements, recommendations, self-presentation, and performance on standardized tests. Students
admitted to Constructor University demonstrate exceptional academic achievements, intellectual
creativity, and the desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

• Recommendation Letter (optional)
• Official or certified copies of high school/university transcripts
• Educational History Form
• Standardized test results (SAT/ACT) if applicable
• Motivation statement
• ZeeMee electronic resume (optional)
• Language proficiency test results (TOEFL Score: 90, IELTS: Level 6.5 or equivalent)

Formal admission requirements are subject to higher education law and are outlined in the Admission
and Enrollment Policy of Constructor University.

For more detailed information about the admission visit: https://constructor.university/admission-
aid/application-information-undergraduate

https://constructor.university/admission-aid/application-information-undergraduate
https://constructor.university/admission-aid/application-information-undergraduate

11

1.6 More Information and contacts

For more information, please contact the study program chair:

Name: Prof. Dr. Jürgen Schönwälder

Email: jschoenwaelder@constructor.university

or visit our program website: https://constructor.university/programs/undergraduate-
education/computer-science

For more information on Student Services please visit:

Student services | Constructor University

mailto:jschoenwaelder@constructor.university
https://constructor.university/programs/undergraduate-education/computer-science
https://constructor.university/programs/undergraduate-education/computer-science
https://constructor.university/student-life/student-services

12

2 The Curricular Structure

2.1 General

The curricular structure provides multiple elements for enhancing employability, interdisciplinarity,
and internationality. The unique CONSTRUCTOR Track, offered across all undergraduate study
programs, provides comprehensive tailor-made modules designed to achieve and foster career
competency. Additionally, a mandatory internship of at least two months after the second year of
study and the possibility to study abroad for one semester give students the opportunity to gain insight
into the professional world, apply their intercultural competences and reflect on their roles and
ambitions for employment and in a globalized society.

All undergraduate programs at Constructor University are based on a coherently modularized
structure, which provides students with an extensive and flexible choice of study plans to meet the
educational aims of their major as well as minor study interests and complete their studies within the
regular period.

The framework policies and procedures regulating undergraduate study programs at Constructor
University can be found on the website (https://constructor.university/student-life/student-
services/university-policies).

2.2 The Constructor University 4C Model

Constructor University offers study programs that comply with the regulations of the European Higher
Education Area. All study programs are structured according to the European Credit Transfer System
(ECTS), which facilitates credit transfer between academic institutions. The three-year undergraduate
programs involve six semesters of study with a total of 180 ECTS credit points (CP). The undergraduate
curricular structure follows an innovative and student-centered modularization scheme, the 4C Model.
It groups the disciplinary content of the study program in three overarching themes, CHOICE-CORE-
CAREER according to the year of study, while the university-wide CONSTRUCTOR Track is dedicated to
multidisciplinary content dedicated to methods as well as intellectual skills and is integrated across all
three years of study. The default module size is 5 CP, with smaller 2.5 CP modules being possible as
justified exceptions, e.g., if the learning goals are more suitable for 2.5 CP and the overall student
workload is balanced.

 Year 1 – CHOICE

The first study year is characterized by a university-specific offering of disciplinary education that builds
on and expands upon the students’ entrance qualifications. Students select introductory modules for
a total of 45 CP from the CHOICE area of a variety of study programs, of which 15-45 CP will belong to
their intended major. A unique feature of our curricular structure allows students to select their major
freely upon entering Constructor University. The team of Academic Advising Services offers curriculum
counseling to all Bachelor students independently of their major, while Academic Advisors, in their
capacity as contact persons from the faculty, support students individually in deciding on their major
study program.

To pursue Computer Science as a major, the following CHOICE modules (30 CP) need to be taken as
mandatory (m) modules:

2.2.1

https://constructor.university/student-life/student-services/university-policies
https://constructor.university/student-life/student-services/university-policies

13

• CHOICE Module: Programming in C and C++ (m, 7.5 CP)
• CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)
• CHOICE Module: Mathematical Foundations of Computer Science (m, 7.5 CP)
• CHOICE Module: Digital Systems and Computer Architecture (m, 7.5 CP)

The first two modules, Programming in C and C++ and Algorithms and Data Structures, introduce
students to imperative and object-oriented programming and basic algorithms and data structures.
The Mathematical Foundations of Computer Science module covers mathematical concepts like
boolean algebra, propositional and predicate logic, abstract algebra, and graph theory. Students learn
to work with formal notations and how to construct proofs. Starting with elementary digital gates, the
Digital Systems and Computer Architecture module develops an understanding of how the hardware
components of a computer system work. Students learn programming at the machine instruction level.

The remaining CHOICE modules (15 CP) can be selected in the first year of studies according to interest
and/or with the aim to allow a change of major up until the beginning of the second year, when the
major choice becomes fixed. Students not taking up a minor take the Development in JVM Languages
module (7.5 CP) in the second semester.

Students can still change to another major at the beginning of their second year of studies if they have
taken the corresponding mandatory CHOICE modules in their first year of studies. All students must
participate in an entry advising session with their Academic Advisors to learn about their major change
options and consult their Academic Advisor prior to changing their major.

Students that would like to retain a further option are strongly recommended to additionally register
for the CHOICE modules of one of the following study programs in their first year:

• International Relations: Politics and History (IRPH)
CHOICE Module: Introduction to International Relations Theory (7.5 CP)
CHOICE Module: Introduction to Modern European History (7.5 CP)

• Integrated Social and Cognitive Psychology (ISCP)
CHOICE Module: Essentials of Cognitive Psychology (7.5 CP)
CHOICE Module: Essentials of Social Psychology (7.5 CP)

• Robotics and Intelligent Systems (RIS)
CHOICE Module: Mathematical and Physical Foundations of Robotics I (m, 7.5 CP)
CHOICE Module: Mathematical and Physical Foundations of Robotics II (m, 7.5 CP)

• Software, Data and Technology (SDT)
CHOICE Module: Core Algorithms and Data Structures (m, 7.5 CP)
CHOICE Module: Development in JVM Languages (m, 7.5 CP)

The module descriptions can be found in the respective Study Program Handbook.

 Year 2 – CORE

In their second year, students take a total of 45 CP from a selection of in-depth, discipline-specific CORE
modules. Building on the introductory CHOICE modules and applying the methods and skills acquired

2.2.2

14

so far (see 2.3.1), these modules aim to expand the students’ critical understanding of the key theories,
principles, and methods in their major for the current state of knowledge and best practice.

To pursue Computer Science as a major, at least the following mandatory CORE modules (30 CP) need
to be taken:

• CORE Module: Databases (m, 7.5 CP)
• CORE Module: Software Engineering (m, 7.5 CP)
• CORE Module: Operating Systems (m, 7.5 CP)
• CORE Module: Automata, Computability, and Complexity (m, 7.5 CP)

Students decide to complement their studies by taking the discipline-specific mandatory elective (me)
CORE modules (15 CP):

• CORE Module: Functional Programming (me, 5 CP)
• CORE Module: Legal and Ethical Aspects of Computer Science (me, 2.5 CP)
• CORE Module: Machine Learning (me, 5 CP)
• CORE Module: Academic Skills in Computer Science (me, 2.5 CP)

or substitute these modules with CORE modules from other study programs with the aim of pursuing
a minor in a second field.

Computer Science students can take CORE modules (or more advanced Specialization modules) from
a second discipline, which allows them to incorporate a minor study track into their undergraduate
education, within the 180 CP required for a bachelor’s degree. The educational aims of a minor are to
broaden the students’ knowledge and skills, support the critical reflection of statements in complex
contexts, foster an interdisciplinary approach to problem-solving, and to develop an individual
academic and professional profile in line with students’ strengths and interests. This extra qualification
will be highlighted in the transcript.

The Academic Advising Coordinator, Academic Advisor, and the Study Program Chair of the minor
study program support students in the realization of their minor selection; consultation with the
Academic Advisor is mandatory when choosing a minor.

As a rule, obtaining a minor requires Computer Science students to

• select two CHOICE modules (15 CP) from the desired minor program in the first year and
• substitute the mandatory elective Computer Science CORE modules Functional

Programming (me, 5 CP), Legal and Ethical Aspects of Computer Science (me, 2.5 CP),
Machine Learning (me, 5 CP), and Academic Skills in CS (me, 2.5 CP) in the second year
with the default minor CORE modules of the minor study program. Note that the
substituted CORE modules can still be selected in the third year as specialization modules.

The requirements for each specific minor are described in the handbook of the study program offering
the minor (Chapter 3.2) and are marked in the respective Study and Examination Plans. For an overview
of accessible minors, please check the Major/Minor Combination Matrix which is published at the
beginning of each academic year.

Note: Students pursuing Computer Science as a major cannot pursue Software, Data and Technology
(SDT) or Data Science as a minor.

15

 Year 3 – CAREER

During their third year, students prepare and make decisions about their career path after graduation.
To explore available choices and to gain professional experience, students undertake a mandatory
summer internship. The third year of studies allows Computer Science students to take Specialization
modules within their discipline, but also focuses on the responsibility of students beyond their
discipline (see CONSTRUCTOR Track).

The fifth semester also opens a mobility window for a diverse range of study abroad options. Finally,
the sixth semester is dedicated to fostering the students’ research experience by involving them in an
extended Bachelor thesis project.

2.2.3.1 Internship / Start-up and Career Skills Module

As a core element of Constructor University’s employability approach students are required to engage
in a mandatory two-month internship of 15 CP that will usually be completed during the summer
between the second and third years of study. This gives students the opportunity to gain first-hand
practical experience in a professional environment, apply their knowledge and understanding in a
professional context, reflect on the relevance of their major to employment and society, reflect on
their own role in employment and society, and find a professional orientation. The internship can also
establish valuable contacts for the students’ Bachelor’s thesis project, for the selection of a Master
program graduate school or further employment after graduation. This module is complemented by
career advising and several career skills workshops throughout all six semesters that prepare students
for the transition from student life to professional life. As an alternative to the full-time internship,
students interested in setting up their own company can apply for a start-up option to focus on
developing of their business plans.

For further information, please contact the Career Service Center (CSC)
(https://constructor.university/student-life/career-services).

2.2.3.2 Specialization Modules

In the third year of their studies, students take 15 CP from major-specific or major-related, advanced
Specialization modules to consolidate their knowledge and to be exposed to state-of-the-art research
in the areas of their interest. This curricular component is offered as a portfolio of modules, from which
students can make free selections during their 5th and 6th semester. The default specialization module
size is 5 CP, with smaller 2.5 CP modules being possible as justified exceptions.

To pursue CS as a major, 15 CP from the following mandatory elective Specialization Modules need to
be taken:

• CS Specialization: Computer Graphics (me, 5 CP)
• CS Specialization: Image Processing (me, 5 CP)
• CS Specialization: Distributed Algorithms (me, 5 CP)
• CS Specialization: Web Application Development (me, 5 CP)
• CS Specialization: Computer Networks (me, 5 CP)
• CS Specialization: Secure and Dependable Systems (me, 5 CP)
• CS Specialization: Ethical Hacking and Offensive Security (me, 5 CP)
• CS Specialization: Security Monitoring and Incident Response (me, 5 CP)
• CS Specialization: Linux Kernel Internals (me, 5 CP)

2.2.3

https://constructor.university/student-life/career-services

16

• CS Specialization: Advanced Operating Systems (me, 5 CP)
• RIS CORE: Computer Vision (me, 5 CP)
• RIS Specialization: Human Computer Interaction (me, 5 CP)
• RIS CORE: Artificial Intelligence (me, 5 CP)
• RIS CORE: Robotics (me, 5 CP)
• ECE Specialization: Digital Design (me, 5 CP)
• ECE CORE: Information Theory (me, 5 CP)
• SDT CORE: Functional Programming (me, 5 CP)

Students pursuing a minor in a second field of studies can additionally select Specialization Modules
from:

• CS CORE: Legal and Ethical Aspects of Computer Science (me, 2.5 CP)
• CS CORE: Academic Skills in Computer Science (me, 2.5 CP)
• CS CORE: Machine Learning (me, 5 CP)

To obtain a Specialization in Cybersecurity students must successfully pass these specific modules:

• Secure and Dependable Systems (m, 5 CP)
• Ethical Hacking and Offensive Security (m, 5 CP)
• Security Monitoring and Incident Response (m, 5 CP)

In addition, students must write a Bachelor thesis on a topic related to Cybersecurity.

2.2.3.3 Specializations

Students can specialize on a specific specializa�on topic in their 3rd year by (i) obtaining 15 CP in
specializa�on modules that belong to a defined specializa�on topic and (ii) wri�ng their Bachelor
thesis on a topic related to the specializa�on topic. The topic of a completed specializa�on will be
listed on the diploma supplement and the transcript.

The following specializa�on topics are currently defined:

• Specializa�on Cybersecurity

The increasing relevance of cybersecurity in both industry and research requires specialized
training for future computer scien�sts. The specializa�on in Cybersecurity requires that
students obtain 15 CP specializa�on credits in the following specializa�on modules and write
their thesis on a topic related to cybersecurity:

- Secure and Dependable Systems (m, 5 CP)
- Ethical Hacking and Offensive Security (m, 5 CP)
- Security Monitoring and Incident Response (m, 5 CP)

17

2.2.3.4 Study Abroad

Students have the opportunity to study abroad for a semester to extend their knowledge and abilities,
broaden their horizons and reflect on their values and behavior in a different context as well as on
their role in a global society. For a semester abroad (usually the 5th semester), modules related to the
major with a workload equivalent to 22.5 CP must be completed. Modules recognized as study abroad
CP need to be pre-approved according to Constructor University study abroad procedures. Several
exchange programs allow students to directly enroll at prestigious partner institutions worldwide.
Constructor University’s participation in Erasmus+, the European Union’s exchange program, provides
an exchange semester at a number of European universities that include Erasmus study abroad
funding.

For further information, please contact the International Office (https://constructor.university/
student-life/study-abroad/international-office).

Computer Science students pursuing a study abroad in their 5th semester are required to select their
modules at the study abroad partners such that they can be used to substitute between 10-15 CP of
major-specific Specialization modules and between 5-15 CP of modules equivalent to the non-
disciplinary New Skills modules (see CONSTRUCTOR Track). In their 6th semester, according to the
study plan, returning study-abroad students complete the Bachelor Thesis/Seminar module (see next
section), they take any missing Specialization modules to reach the required 15 CP in this area, and
they take any missing New Skills modules to reach 15 CP in this area.

2.2.3.5 Bachelor Thesis/Seminar Module

This module is a mandatory graduation requirement for all undergraduate students. It consists of two
module components in the major study program guided by a Constructor University faculty member:
the Bachelor Thesis (12 CP) and a Seminar (3 CP). The title of the thesis will appear on the students’
transcripts.

Within this module, students apply the knowledge skills, and methods they have acquired in their
major discipline to become acquainted with actual research topics, ranging from the identification of
suitable (short-term) research projects, preparatory literature searches, the realization of discipline-
specific research, and the documentation, discussion, and interpretation of the results.

With their Bachelor Thesis students demonstrate mastery of the contents and methods of the
computer science research field. Furthermore, students show the ability to analyze and solve a well-
defined problem with scientific approaches, a critical reflection of the status quo in scientific literature,
and the original development of their own ideas. With the permission of a Constructor University
Faculty Supervisor, the Bachelor Thesis can also have an interdisciplinary nature. In the seminar,
students present and discuss their theses in a course environment and reflect on their theoretical or
experimental approach and conduct. They learn to present their chosen research topics concisely and
comprehensively in front of an audience and to explain their methods, solutions, and results to both
specialists and non-specialists.

https://constructor.university/%20student-life/study-abroad/international-office
https://constructor.university/%20student-life/study-abroad/international-office

18

2.3 The CONSTRUCTOR Track

The CONSTRUCTOR Track is another important feature of Constructor University’s educational model.
The Constructor Track runs orthogonal to the disciplinary CHOICE, CORE, and CAREER modules across
all study years and is an integral part of all undergraduate study programs. It provides an intellectual
tool kit for lifelong learning and encourages the use of diverse methodologies to approach cross-
disciplinary problems. The CONSTRUCTOR track contains Methods, New Skills and German Language
and Humanities modules.

 Methods Modules

Methods such as mathematics, statistics, programming, data handling, presentation skills, academic
writing, and scientific and experimental skills are offered to all students as part of the Methods area in
their curriculum. The modules that are specifically assigned to each study program equip students with
transferable academic skills. They convey and practice specific methods that are indispensable for each
students’ chosen study program. Students are required to take 20 CP in the Methods area. The size of
all Methods modules is 5 CP.

To pursue Computer Science as major, the following Methods module (5 CP) is mandatory

• Methods Module: Elements of Linear Algebra (me, 5 CP)
• Methods Module: Elements of Calculus (me, 5 CP)
• Methods Module: Probability and Random Processes (m, 5 CP)

Students who have a strong mathematical background can also choose Matrix Algebra and Advanced
Calculus I and II (me, 5 CP each) instead of Elements of Linear Algebra and Elements of Calculus.

For the remaining 5 CP CS students can choose between the Methods modules

• Methods Module: Numerical Methods (me, 5 CP)
• Methods Module: Statistics and Data Analytics (me, 5 CP)

 New Skills Modules

This part of the curriculum constitutes an intellectual and conceptual tool kit that cultivates the
capacity for a particular set of intellectual dispositions including curiosity, imagination, critical thought,
and transferability. It nurtures a range of individual and societal capacities, such as self-reflection,
argumentation and communication. Finally, it introduces students to the normative aspects of inquiry
and research, including the norms governing sourcing, sharing, withholding materials and research
results as well as others governing the responsibilities of expertise as well as the professional point of
view

All students are required to take the following modules in their second year:

• New Skills Module: Logic (m, 2.5 CP)
• New Skills Module: Causation and Correlation (m, 2.5 CP)

These modules will be offered with two different perspectives, one of which the students can choose.
The module perspectives are independent modules which examine the topic from different points of
view. Please see the module description for more details.

2.3.1

2.3.2

19

In the third year, students take three 5 CP modules that build upon previous modules in the track and
are partially constituted by modules that are more closely linked to each student’s disciplinary field of
study. The following module is mandatory for all students:

• New Skills Module: Argumentation, Data Visualization and Communication (m, 5 CP)

This module will also be offered with two different perspectives of which the students can choose.

In their fifth semester, students may choose between:

• New Skills Module: Linear Model/Matrices (me, 5 CP) and
• New Skills Module: Complex Problem Solving (me, 5 CP).

The sixth semester also contains the choice between two modules, namely:

• New Skills Module: Agency, Leadership and Accountability (me, 5 CP) and
• New Skills Module: Community Impact Project (me, 5 CP).

Students who study abroad during the fifth semester and are not substituting the mandatory
Argumentation, Data Visualization and Communication module, are required to take this module
during their sixth semester. Students who remain on campus are free to take the Argumentation, Data
Visualization and Communication module in person in either the fifth or sixth semester as they prefer.

 German Language and Humanities Modules

German language abilities foster students’ intercultural awareness and enhance their employability in
their host country. They are also beneficial for securing mandatory internships (between the 2nd and
3rd year) in German companies and academic institutions. Constructor University supports its students
in acquiring basic as well as advanced German skills in the first year of the Constructor Track. Non-
native speakers of German are encouraged to take 2 German modules (2.5 CP each), but are not
obliged to do so. Native speakers and other students not taking advantage of this offering
take alternative modules in Humanities in each of the first two semesters:

• Humanities Module: Introduction to Philosophical Ethics (2.5 CP)
• Humanities Module: Introduction to the Philosophy of Science (2.5 CP)
• Humanities Module: Introduction to Visual Culture (2.5 CP)

2.3.3

20

3 Computer Science as a Minor

3.1 Qualification Aims

Students obtaining a minor in Computer Science learn the basic principles of software development
and modern software development processes. They acquire an understanding of how modern
information systems are designed and implemented. Upon completion of the minor, they will have
obtained sufficient knowledge about computer science concepts such that they can effectively work
together with professionals with a Computer Science degree. Students obtaining a minor in Computer
Science can help to drive digitalization processes, as they can effectively translate requirements of the
field of their major into terminology and technology used by Computer Science professionals. Students
majoring in a technical discipline can obtain a minor to strengthen their understanding of how to use
software and hardware components effectively, thereby achieving efficient solutions for problems in
their domain.

 Intended Learning Outcomes

With a minor in Computer Science, students will be able to

1. develop solutions to problems in computer science in close collaboration with computer
science professionals;

2. communicate requirements appropriately to their audience and understand computer science
aspects of a solution;

3. apply programming concepts and basic algorithms to solve software development problems
of moderate complexity in an adequate way;

4. understand how design choices impact the efficiency of solutions.

3.2 Module Requirements

A minor in Computer Science requires 30 CP. The default option to obtain a minor in Computer Science
is marked in the Study and Examination Plan in chapter 6. It includes the following mandatory CHOICE
and CORE modules:

• CHOICE Module: Programming in C and C++ (m, 7.5 CP)
• CHOICE Module: Algorithms and Data Structures (m, 7.5 CP)
• CORE Module: Databases (m, 7.5 CP)
• CORE Module: Software Engineering (m, 7.5 CP)

Upon the consultation with the Academic Advisor and approval by the CS Study Program Coordinator,
individual CORE modules from the default minor can be replaced by other advanced modules (CORE
or Specialization) from the CS major.

3.3 Degree

After successful completion, the minor in Computer Science will be listed on the final transcript under
PROGRAM OF STUDY and BA/BSc – [name of the major] as “(Minor: Computer Science).”

3.1.1

21

4 Computer Science Undergraduate Program Regulations

4.1 Scope of these Regulations

The regulations in this handbook are valid for all students who entered the Computer Science
undergraduate program at Constructor University in Fall 2025. In case of conflict between the
regulations in this handbook and the general policies for Bachelor Studies, the latter apply (see
https://constructor.university/student-life/student-services/university-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook might
occur during the course of study (e.g., change of the semester sequence, assessment type, or the
teaching mode of courses).

Updates to Study Program Handbooks are based on the policies approved by the Academic Senate on
substantial and nonsubstantial changes to study programs. Students are integrated in the decision-
making process through their respective committee representatives. All students affected by the
changes will be properly informed.

In general, Constructor University therefore reserves the right to change or modify the regulations of
the program handbook also after its publication at any time and in its sole discretion.

4.2 Degree

Upon successful completion of the study program, students are awarded a Bachelor of Science degree
in Computer Science.

4.3 Graduation Requirements

To graduate, students need to obtain 180 CP. In addition, the following graduation requirements apply:

• Students need to complete all mandatory components of the program as indicated in the Study
and Examination Plan in chapter 6 of this handbook.

• Students graduating in Computer Science without a minor have to obtain
o 20 CP in Methods modules (mathematics),
o 97.5 CP in Computer Science modules, and
o 15 CP for the Bachelor thesis and the associated seminar.

• Students graduating in Computer Science with a minor in a second discipline have to obtain
o 20 CP in Methods modules (mathematics),
o 75 CP in Computer Science modules, and
o 30 CP for the minor of choice

• Students have to obtain 15 CP for their Internship.
• Also, obtain a total of 25 CP in the general part of the Constructor Track

https://constructor.university/student-life/student-services/university-policies

22

5 Schematic Study Plan for Computer Science

Figure 2 shows schematically the sequence and types of modules required for the study program. A more detailed description, including the assessment types, is given in the
Study and Examination Plans in the following section.

C >ONSTRUCTOR
UNIVERSITY Computer Science (180 CP)

CHOICE/ CORE/ CAREER 3 x 45 = 135 CP

I m 15CP I Bachelor Thesis / Seminar

Summer Internship/ Start-Up
(after 2nd year)

Specialization I Specialization II Specialization Ill
me, 5 CP me, 5CP me, 5 CP m, 15 CP

Automata , Computability,

Machine Learning Academic Software Engineering
Complexity Skills in CS

m, 7.5CP m, 7.5CP me, 5CP me, 2.5 CP

Functional
Legal and

Databases Operating Systems Ethical

Programming Aspects

m, 7.5CP m, 7.5CP me 5CP me, 2.5 CP

Digital Systems and Computer Development in JVM
Algorithms and Data Structures

Architecture Languages
m, 7.5CP m, 7.5CP me, 7.5 CP

Programming in C and C++
Mathematical Foundations of

Own Selection
Computer Science

m, 7.5CP m, 7.5CP me, 7.5 CP

C>ONSTRUCTOR

CONSTRUCTOR Track 45 CP

Agency, Leadership &
Accountability OR Community

Impact Project
Argumentation, me, 5CP Data Visualization

and
Communication" Linear Model and Matrices OR

Complex Problem Solving
m, 5CP me, 5CP

Numerical Methods OR
Causation/

Statistics and Data
Correlation ••

Analyticsme 5 CP m, 2.5CP

Probability and Random Logic••
Processes

m, 5CP m, 2.5 CP

German I

Elements of Calculus Humanities

me 5CP me, 2.5 CP

German/
Elements of Linear Humanities

Algebra
me, 5 CP me, 2.5 CP

Minor Option in CS (30 CP) CP: Credit Points m: mandatory Study abroad Option in 5th **Different module
I ______________________________ 1

me: mandatory elective Semester (22.5 CP) perspectives available

23

6 Study and Examination Plan

Computer Science (CS) BSc
Matriculation Fall 2025

Program-Specific Modules Type Assessment Period Status¹ Sem. CP CONSTRUCTOR Track Modules (General Education) Type Assessment Period Status¹ Sem. CP
Year 1 - CHOICE
Take the mandatory CHOICE modules listed below, this is a requirement for the Computer Science program.

Unit: Programming, Algorithms, and Data Structures (default minor choice modules) 15 Unit: Methods 10
CH-230 Module: Programming in C and C++ m 1 7.5 CTMS-MAT-24 Module: Elements of Linear Algebra me 1 5
CH-230-A Programming in C and C++ Lecture Written examination Examination period 5 CTMS-24 Elements of Linear Algebra Lecture Written examination Examination period
CH-230-B Programming in C and C++ Tutorial Tutorial Program Code During the semester 2.5 CTMS-MAT-25 Module: Elements of Calculus me 2 5
CH-231 Module: Algorithms and Data Structures m 2 7.5 CTMS-25 Elements of Calculus Lecture Written examination Examination period
CH-231-A Algorithms and Data Structures Lecture Written examination Examination period

Unit: Computer Science, Robotics, and Intelligent Systems 15 CTMS-MAT-22 Module: Matrix Algebra & Advanced Calculus I me 1 5

CH-233 Module: Mathematical Foundations of Computer Science m 1 7.5 CTMS-22 Matrix Algebra & Advanced Calculus I Lecture Written examination Examination period
CH-233-A Mathematical Foundations of Computer Science Lecture 5 CTMS-MAT-23 Module: Matrix Algebra & Advanced Calculus II me 2 5
CH-233-B Mathematical Foundations of Computer Science Tutorial Tutorial 2.5 CTMS-23 Matrix Algebra & Advanced Calculus II Lecture Written examination Examination period
CH-234 Module: Digital Systems and Computer Architecture m 2 7.5
CH-234-A Digital Systems and Computer Architecture Lecture Written examination Examination period 5 Unit: German Language and Humanities (choose one module for each sememster) 5
CH-234-B Digital Systems and Computer Architecture Tutorial Tutorial During the semester 2.5 German is default language and open to Non-German speakers (on campus and online). 4

Unit: CHOICE (own selection) 1/2 15 CTLA-xxx Module: Language 1 me 1 2,5

CTLA-xxx Language 1 Seminar Various Various me

SDT-103 Module:Development in JVM Languages me 2 7.5 CTLA-xxx Module: Language 2 me 2 2,5
SDT-103-A Development in JVM Languages Lecture Written examination Examination period 2.5 CTLA-xxx Language 2 Seminar Various Various me
SDT-103-B Development in JVM Languages Tutorial Program Code During the semester 5 CTHU-HUM-001 Humanities Module: Introduction to Philosophical Ethics me 1 2,5

CTHU-001 Introduction into Philosophical Ethics Lecture (online) Written examination Exam period me

CTHU-HUM-002 Humanities Module: Introduction to the Philosophy of Science me 2 2,5

CTHU-002 Introduction to the Philosophy of Science Lecture (online) Written examination Exam period me

CTHU-HUM-003 Humanities Module: Introduction to Visual Culture me 2 2,5

CTHU-003 Introduction to Visual Culture Lecture (online) Written examination Exam period me

Year 2 - CORE 15
Take all CORE modules listed below or replace mandatory elective (me) modules with default CORE modules from minor study program

Unit: Advanced Computer Science I (default minor advanced modules) 15 Unit: Methods 10
CO-560 Module: Databases m 3 7.5 CTMS-MAT-12 Module: Probability and Random Processes m 3 5

CO-560-A Databases Lecture Written examination Examination period 5 CTMS-12 Probability and Random Processes Lecture Written examination Examination period 5
CO-560-B Databases- Project Project Project assessment During the semester 2.5 Take one of the two listed mandatory elective methods modules:
CO-561 Module: Software Engineering m 4 7.5 CTMS-MET-21 Module: Statistics and Data Analysis me 4 5
CO-561-A Software Engineering Lecture Written examination Examination period 2.5 CTMS-21 Statistics and Analysis Lecture Written examination Examination period
CO-561-B Software Engineering Project Project Project assessment During the semester 5 CTMS-MAT-13 Module: Numerical Methods me 4 5

Unit: Advanced Computer Science II 15 CTMS-13 Numerical Methods Lecture Written examination Examination period
CO-562 Module: Operating Systems m 3 7.5
CO-562-A Operating Systems Lecture Written examination Examination period
CO-563 Module: Automata, Computability, and Complexity m 4 7.5 Unit: New Skills 5
CO-563-A Automata, Computability, and Complexity Lecture Written examination Examination period Choose one of the two modules

Unit: Advanced Computer Science III 15 CTNS-NSK- 01 Module: Logic (perspective I) me 3 2,5
SDT-202 Module: Functional Programming me 3 5 CTNS-01 Logic (perspective I) Online Lecture Written Examination Examination period 2,5
SDT-202-A Functional Programming Lecture Written examination Examination period 2.5 CTNS-NSK-02 Module: Logic (perspective II)
SDT-202-B Functional Programming Tutorial Tutorial Program code During the semester 2.5 CTNS-02 Logic (perspective II) Online Lecture Written Examination Examination period 2,5
CO-565 Module: Legal and Ethical Aspects of Computer Science me 3 2.5
CO-565-A Legal and Ethical Aspects of Computer Science Lecture Poster presentation Examination period CTNS-NSK-03 Module: Correlation and Causation (perspective I) me 4 2,5
CO-541 Module: Machine Learning m 4 5 CTNS-03 Correlation and Causation (perspective I) Online Lecture Written Examination Examination period 2,5
CO-541-A Machine Learning Lecture Written examination Examination period CTNS-NSK-04 Module: Correlation and Causation (perspective II) me 4 2,5
CO-567-A Module: Academic Skills in Computer Science me 4 2.5 CTNS-04 Correlation and Causation (perspective II) Online Lecture Written Examination Examination period 2,5
CO-567-A Academic Skills in Computer Science Seminar Project assessment Examination period

Written examination Examination period

Students take two further CHOICE modules from those offered for all other study programs² if they intend to pursue a minor. If no minor will be pursued, take SDT-103 and one additional Choice module
from another study program

Choose one of the two modules

45

45

15

Students who have a strong mathematical background can also choose the following instead of CTMS-MAT-22 and CTMS-MAT-23:

Figure 3: Study and Examination Plan

24

Year 3 - CAREER

CA-INT-900 Module: Summer Internship m 4/5 15 Unit: New Skills 10
CA-INT-900-0 Summer Internship Report/Business During the 5th semester Choose one of the two modules
CA-CS-800 Module: Thesis / Seminar CS m 6 15 CTNS-NSK-05 Module: Linear Model / Matrices me 5 5
CA-CS-800-T Thesis CS Thesis Thesis 15th of May 12 CTNS-05 Linear Model/ Matrices Seminar (online) Written examination Examination period 5
CA-CS-800-S Seminar CS Seminar Presentation During the semester 3 CTNS-NSK-06 Module: Complex Problem Solving me 5 5

Unit: Specialization CS m 5/6 15 CTNS-06 Complex Problem Solving Lecture (online) Written examination Examination period 5
Take a total of 15 CP Specialization Modules Choose one of the two modules 5
CA-S-CS-801 Module: Computer Graphics me 5 5 CTNS-NSK-07 Module: Argumentation, Data Visualization and Communication me 5/6 5
CA-S-CS-801-A Computer Graphics Lecture Written examination Examination period CTNS-07 Argumentation, Data Visualization and Communication (perspective I) Online Lecture Written examination Examination period 5 5
CA-S-CS-802 Module: Image Processing me 6 5 CTNS-NSK-08 Module: Argumentation, Data Visualization and Communication me 5/6 5
CA-S-CS-802-A Image Processing Lecture Written examination Examination period 5 CTNS-08 Argumentation, Data Visualization and Communication (perspective II) Online Lecture Written examination Examination period 6 5
CA-S-CS-803 Module: Distributed Algorithms me 6 5 Choose one of the two modules
CA-S-CS-803-A Distributed Algorithms Lecture Written examination Examination period 5 CTNS-NSK Module: Agency, Accountability & Leadership me 6 5

CA-S-CS-804 Module: Web Application Development	 me 6 5 CTNS-09 Agency, Accountability & Leadership Lecture (online) Written examination Examination period 5

CA-S-CS-804-A Web Application Development Lecture Written examination Examination period 2.5 CTNS-CIP-10 Module: Community Impact Project me 5/6 5

CA-S-CS-804-B Web Application Development Project Project assessment During the semester 2.5 CTNS-CIP-10 Community Impact Project Project Project During the Sememster 5

CO-564 Module: Computer Networks me 5 5
CO-564-A Computer Networks Lecture Written examination Examination period
CO-566 Module: Secure and Dependable Systems me 5 5
CO-566-A Secure and Dependable Systems Lecture Written examination Examination period
CA-S-CS-807 Module: Security Monitoring and Incident Response me 6 5
CA-S-CS-807 Security Monitoring and Incident Response Lecture Written examination Examination period
CA-CS-808 Module: Ethical Hacking and Offensive Security me 6 5
CA-CS-808 Ethical Hacking and Offensive Security Lab Lab report During the semester
CA-S-CS-809 Linux Kernel Internals me 6 5

CA-CS-809 Linux Kernel Internals Lecture Written examination Examination period 180
CA-S-CS-810 Advanced Operating Systems me 5 5
CA-CS-810 Advanced Operating Systems Lecture Written examination Examination period
CA-S-xxx Specialization electives (from RIS, ECE, DE study programs)³ Lecture Written examination Examination period me 5/6 5

Total CP
¹ Status (m = mandatory, me = mandatory elective)
² For a full listing of all CHOICE / CORE / CAREER / CONSTRUCTOR Track modules please consult the CampusNet online catalogue and /or the study program handbooks.
³ For details please see the CS program handbook.
4 German native speakers will have alternatives to the language courses (in the field of Humanities).

45 15

25

7 Computer Science Modules

7.1 Programming in C and C++

Module Name Programming in C and C++
Module Code 2025-CH-230
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 1
- 2025-RIS-BSc 1
- 2025-ECE-BSc 1
- 2025-SDT-BSc 1
- 2025-Minor-RIS-BSc 1
- 2025-Minor-CS-BSc 1
- 2025-Minor-Software Development 1

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Dr. Kinga Lipskoch

Forms of Learning and Teaching
Exam Preparation 20

Lecture 35
Tutorial 17

Independent Study 115
Workload Hours 187 hours

Module Components Number Type CP
Programming in C and C++ CH-230-A Lecture 5
Programming in C and C++ - Tutorial CH-230-B Tutorial 2.5

Module Description

This course offers an introduction to programming using the programming languages C and C++. After
a short overview of the program development cycle (editing, preprocessing, compiling, linking,
executing), the module presents the basics of C programming. Fundamental imperative programming
concepts such as variables, loops, and function calls are introduced in a hands-on manner. Afterwards,
basic data structures such as multidimensional arrays, structures, and pointers are introduced and
dynamically allocated multidimensional arrays and linked lists and trees are used for solving simple
practical problems. The relationships between pointers and arrays, pointers and structures, and

I I

26

pointers and functions are described, and they are illustrated using examples that also introduce
recursive functions, file handling, and dynamic memory allocation.

The module then introduces basic concepts of object-oriented programming languages using the
programming language C++ in a hands-on manner. Concepts such as classes and objects, data
abstractions, and information hiding are introduced. C++ mechanisms for defining and using objects,
methods, and operators are introduced and the relevance of constructors, copy constructors, and
destructors for dynamically created objects is explained. Finally, concepts such as inheritance,
polymorphism, virtual functions, and overloading are introduced. The learned concepts are applied by
solving programming problems.

Recommended Knowledge

It is recommended that students install a suitable programming environment on their notebooks. It is
recommended to install a Linux system such as Ubuntu, which comes with open-source compilers such
as gcc and g++ and editors such as vim or emacs. Alternatively, the open-source Code: Blocks
integrated development environment can be installed to solve programming problems

Usability and Relationship to other Modules

This module introduces the programming languages C and C++ and several other modules build on this
foundation. Certain features of C++ such as templates and generic data structures and an overview of
the standard template library will be covered in the Algorithms and Data Structures module.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain basic concepts of imperative programming languages such

as variables, assignments, loops, and function calls.
2 Write Write, test, and debug programs in the procedural programming

language C using basic C library functions.
3 Demonstrate Demonstrate how to use pointers to create dynamically allocated

data structures such as linked lists.
4 Explain Explain the relationship between pointers and arrays.
5 Illustrate Illustrate basic object-oriented programming concepts such as

objects, classes, information hiding, and inheritance.
6 Give Give original examples of function and operator overloading and

polymorphism.
7 Write Write, test, and debug programs in the object-oriented

programming language C++.

Indicative Literature

• Brian Kernighan, Dennis Ritchie: The C Programming Language, 2nd edition, PrenticeHall
Professional Technical Reference, 1988.

• Steve Oualline: Practical C Programming, 3rd edition, O'Reilly Media, 1997.
• Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice Hall, 2000.
• Bruce Eckel, Chuck Allison: Thinking in C++: Practical Programming, Prentice Hall, 2004.
• Bjarne Stroustrup: The C++ Programming Language, 4th edition, Addison Wesley, 2013.

27

• Michael Dawson: Beginning C++ Through Game Programming, 4th edition, Delmar Learning,
2014.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Programming in C and C++ Written
Examination

120
minutes

67 45% All
theoret
ical
ILOs

Programming in C and C++
- Tutorial

Program Code 33 45% All
Practic
al ILOs

Module Achievements: None

28

7.2 Algorithms and Data Structures

Module Name Algorithms and Data Structures
Module Code 2025-CH-231
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-RIS-BSc 2
- 2025-CS-BSc 2
- 2025-Minor-CS-BSc 2

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Dr. Kinga Lipskoch

Forms of Learning and Teaching
Class Attendance 52.5

Independent Study 115
Exam Preparation 20

Workload Hours 187.5 hours

Module Components Number Type CP
Algorithms and Data Structures CH-231-A Lecture 7.5

Module Description

Algorithms and data structures are the core of computer science. An algorithm is an effective
description for calculations using a finite list of instructions that can be executed by a computer. A data
structure is a concept for organizing data in a computer such that data can be used efficiently. This
introductory module allows students to learn about fundamental algorithms for solving problems
efficiently. It introduces basic algorithmic concepts; fundamental data structures for efficiently storing,
accessing, and modifying data; and techniques that can be used for the analysis of algorithms and data
structures with respect to their computational and memory complexities. The presented concepts and
techniques form the basis of almost all computer programs.

Recommended Knowledge

Students should refresh their knowledge of the C and C++ programming language and be able to solve
simple programming problems in C and C++. Students are expected to have a working programming
environment.

Usability and Relationship to other Modules

Familiarity with basic algorithms and data structures is fundamental for almost all advanced modules
in computer science. This module additionally introduces advanced concepts of the C++ programming

29

language that are needed in advanced programming-oriented modules in the 2nd and 3rd years of the
CS and RIS programs.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain asymptotic (time and memory) complexities and respective

notations.
2 Able Able to prove asymptotic complexities of algorithms.
3 Illustrate Illustrate basic data structures such as arrays, lists, queues, stacks,

trees, and hash tables.
4 Describe Describe algorithmic design concepts and apply them to new

problems.
5 Explain Explain basic algorithms (sorting, searching, graph algorithms,

computational geometry) and their complexities.
6 Summarize Summarize and apply C++ templates and generic data structures

provided by the standard C++ template library.

Indicative Literature

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to
Algorithms, 3rd edition, MIT Press, 2009.

• Donald E. Knuth: The Art of Computer Programming: Fundamental Algorithms, volume 1, 3rd
edition, Addison Wesley Longman Publishing, 1997.

Entry Requirements

Prerequisites Programming in C and C++
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Algorithms and Data
Structures

Written
Examination

120
minutes

100 45% 1-6

Module Achievements: None

I I I I

30

7.3 Mathematical Foundations of Computer Science

Module Name Mathematical Foundations of Computer
Science

Module Code 2025-CH-233
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 1
- 2025-SDT-BSc 1

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 35

Tutorial 17.5
Independent Study 115

Exam Preparation 20
Workload Hours 187.5 hours

Module Components Number Type CP
Mathematical Foundations of
Computer Science

CH-233-A Lecture 5

Mathematical Foundations of
Computer Science Tutorial

CH-233-B Tutorial 2.5

Module Description

The module introduces students to the mathematical foundations of computer science. Students learn
to reason logically and clearly. They acquire the skill to formalize arguments and to prove propositions
mathematically using elementary logic. Students are also introduced to fundamental concepts of graph
theory and elementary graph algorithms.

After establishing the concept of algorithms, the first part covers basic elements of discrete
mathematics, leading to

Boolean algebra, propositional logic, and predicate logic. Students learn how to use fundamental proof
techniques to prove (or disprove) simple propositions. The second part of the module introduces
students to basic concepts of algebraic structures like groups, rings, and fields and different structure
preserving maps (homomorphisms). Students study how these abstract concepts relate to problems
in computer science. The last part of the module covers the basic elements of graph theory and the
different representation of graphs. Elementary graph algorithms are introduced that have a wide range
of applicability in computer science.

31

Recommended Knowledge

It is recommended that students revise mathematical concepts from their high school education.

Usability and Relationship to other Modules

This module introduces key mathematical concepts and teaches students to work with mathematical
abstractions that are relevant for computer science. The acquired skills are relevant for subsequent
courses covering theoretical or abstract

aspects of computer science.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain basic concepts and properties of algorithms.
2 Understand Understand the concept of termination and complexity metrics.
3 Illustrate Illustrate basic concepts of discrete math (sets, relations, functions).
4 Use Use basic proof techniques and apply them to prove properties of

algorithms.
5 Summarize Summarize basic principles of Boolean algebra and propositional

logic.
6 Use Use predicate logic and outline concepts such as validity and

satisfiability.
7 Distinguish Distinguish abstract algebraic structures such as groups, rings and

fields.
8 Classify Classify different structure preserving maps (homomorphisms).
9 Understand Understand calculations in finite fields and their applicability to

computer science.
10 Explain Explain elementary concepts of graph theory and use different

graph representations.
11 Outline Outline basic graph algorithms (e.g., traversal, search, spanning

trees).

Indicative Literature

• Eric Lehmann, F. Thomson Leighton, Albert R. Meyer: Mathematics for Computer Science,
online 2018.

• Winfried K. Grassmann, Jean-Paul Tremblay: Logic and Discrete Mathematics: A Computer
Science Perspective, Pearson, 1996.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

32

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Mathematical Foundations
of Computer Science

Written
Examination

120
minutes

100 45% All

Mathematical Foundations
of Computer Science
Tutorial

Module Achievements: 50% of ten weekly assignments correctly solved. Two additional assignments
are offered during the semester and another assignment is offered in January to makeup missing
points.

33

7.4 Digital Systems and Computer Architecture

Module Name Digital Systems and Computer Architecture
Module Code 2025-CH-234
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-ECE-BSc 2
- 2025-RIS-BSc 2
- 2025-CS-BSc 2

Mandatory Elective status for:
- 2025-SDT-BSc 2

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Lecture 35
Tutorial 17.5

Independent Study 115
Exam Preparation 20

Workload Hours 187.5 hours

Module Components Number Type CP
Digital Systems and Computer
Architecture

CH-234-A Lecture 5

Digital Systems and Computer
Architecture Tutorial

CH-234-B Tutorial 2.5

Module Description

The module introduces the essential hardware components of a digital computer system. Students will
learn how useful digital circuits to add numbers or to store data can be constructed out of basic logic
gates. Using these building blocks, the module will introduce how a simple processor can be
constructed and how it interacts with memory systems and other components of a computer system.
Students will practice the basics of assembler programming to understand program execution at the
hardware level.

Usability and Relationship to other Modules

This module introduces students to the digital hardware components of a computer system. Students
attain an understanding of program execution at the hardware level. Other modules requiring an
understanding of program execution at the hardware level may require this module as a prerequisite.

Intended Learning Outcomes

No Competence ILO

34

1 Understand Understand the architecture of a digital computer.
2 Explain Explain the representation of numbers (integers and floats).
3 Summarize Summarize basic laws of Boolean algebra.
4 Describe Describe basic logic gates and which Boolean functions they

implement.
5 Construct Construct and analyze basic combinational digital circuits (e.g.,

adder, comparator, multiplexer).
6 Design Design and analyze basic sequential digital circuits (e.g., latches, flip-

flops).
7 Outline Outline the basic structure of the von Neumann computer

architecture.
8 Explain Explain the execution of machine instructions on a von Neumann

computer.
9 Develop Develop simple programs in an assembler language such as the RISC-

V.
10 Demonstrate Demonstrate how function calls are executed and the role of the

stack.
11 Understand Understand microarchitectural concepts and the importance of the

memory hierarchy.
12 Explain Explain the purpose and principles of operation of the components

of a computer system.

Indicative Literature

• John L Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, 6th
edition, Morgan Kaufmann, 2017.

• Sarah Harris, David Harris: Digital Design and Computer Architecture: RISC-V Edition, Morgan
Kaufmann, 2021.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Digital Systems and
Computer Architecture

Written
Examination

120
minutes

100 45% 1-12

Digital Systems and
Computer Architecture
Tutorial

 1-12

35

Module Achievements: 50% of ten weekly assignments correctly solved. Two additional assignments
are offered during the semester and another assignment is offered in August to makeup missing points.

36

7.5 Development in JVM Languages

Module Name Development in JVM Languages
Module Code 2025-SDT-103
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-SDT-BSc 2

Mandatory Elective status for:
-2025-CS-BSc 2

Duration 1 Semester
Program Affiliation 2025-SDT-BSc (Software, Data and

Technology)
Module Coordinator(s) Prof. Dr. Alexander Omelchenko

Forms of Learning and Teaching
Class Attendance 35

Tutorial 35
Independent Study 97.5

Exam Preparation 20
Workload Hours 187.5 hours

Module Components Number Type CP
Development in JVM Languages SDT-103-A Lecture 2.5
Development in JVM Languages SDT-103-B Tutorial 5

Module Description

In this module students will learn about the Kotlin programming language, a modern, powerful and
expressive language that is used for various purposes from android development, web development
to data science. Students will learn how to apply Kotlin to solve practical problems in software
development and will learn about data types, variables and control flow, functions, object-oriented
programming, exception handling, collections and generics, lambdas, and higher-order functions. They
will also learn about the unique features of Kotlin such as null safety, extension functions and type
inference.

Educational Aims:

- To provide students with a solid foundation in the Kotlin programming language

- To teach students how to apply Kotlin to solve practical problems in software development

- To enable students to write efficient, readable and maintainable code using Kotlin

- To familiarize students with the unique features of Kotlin such as null safety, extension functions, and
type inference

- To prepare students for using Kotlin in Android Development.

I I

37

- To give students a deeper understanding of the fundamental concepts of computer science, such as
algorithms and data structures and how they can be applied to software development.

Recommended Knowledge

Students should refresh their knowledge of the C++ and Python programming language and be able to
solve simple programming problems in C++ and Python. Students are expected to have a working
programming environment.

Usability and Relationship to other Modules

Familiarity with Kotlin programming language is essential for students who wish to specialize in android
development, web development or data science. This module will provide a solid foundation in Kotlin
programming, including its unique features such as null safety, extension functions, and type inference.
Additionally, this module will introduce advanced concepts of programming that are needed in
advanced programming-oriented modules in the 2nd and 3rd years of the SDT program.

Intended Learning Outcomes

No Competence ILO
1 Write Write, understand and debug Kotlin code effectively
2 Use Use the unique features of Kotlin to write readable, maintainable

and expressive code.
3 Use Use Kotlin to solve practical problems in software development.
4 Design Design and implement object-oriented programs in Kotlin.
5 Use Use Kotlin collections and Generics in their programs.
6 Use Use Lambdas and Higher-Order functions in Kotlin.
7 Use Use Kotlin for android development.
8 Write Write efficient and optimized code using Kotlin.
9 Use Use Kotlin for web development.
10 Use Use Kotlin for data science.

Indicative Literature

• Venkat Subramaniam: Programming Kotlin, Pragmatic Bookshelf, 2017.
• Hadi Hariri: Kotlin in Action, Manning Publications, 2017.
• Dmitry Jemerov and Svetlana Isakova: Kotlin in Practice, JetBrains, 2016.
• Antonio Leiva: Kotlin for Android Developers, Leanpub, 2015.
• Marcin Moskala: Kotlin Programming, Packt Publishing, 2018.

Entry Requirements

Prerequisites Programming in C and C++
Co-requisites None
Additional Remarks None

Assessment and Completion

38

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Development in JVM
Languages

Written
Examination

60
Minutes

33 45% All
theoret
ical
ILOs

Development in JVM
Languages - Tutorial

Program Code 67 45% All
practic
al ILOs

Module Achievements: None

39

7.6 Databases

Module Name Databases
Module Code 2025-CO-560
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 3
- 2025-Minor-CS-BSc 3

Mandatory Elective status for:
- 2025-RIS-BSc 3

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Peter Baumann

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 35

Project 97.5
Workload Hours 187.5 hours

Module Components Number Type CP
Databases CO-560-A Lecture 5
Databases - Project CO-560-B Project 2.5

Module Description

This module offers an introduction to databases, with emphasis on practically applicable knowledge
and skills. The course starts with conceptual database design using the Entity Relationship (ER) model,
followed by the relational model and SQL for querying relations. On that occasion, structures for
storing relations on disk are inspected. After that, tuning opportunities are discussed, including Normal
Forms, indexing, transaction management, and views, and finally – based on a brief look at Relational
Algebra query processing and optimization in the server. As today databases often are used for Web
services an excursion is made to inspect the server side of Web request processing in the context of
databases. This in turn prompts security considerations in databases. Concluding the relational part,
the travel leads into NoSQL and NewSQL world. This widens the perspective towards data models
beyond tables and redefined transaction concepts. Towards the semester end, OLAP datacubes are
introduced as a practically important database application with special needs, concepts, and
technology.

A hands-on group project complements the theoretical aspects: on a self-chosen topic, teams of 3 – 4
students implement the core of a web-accessible information system using python (or PHP), MariaDB,
and Linux, in a guided sequence of homework assignments.

Recommended Knowledge

I I

40

Working knowledge of basic data structures, such as trees, is required as well as familiarity with an
object-oriented programming language such as C++. Basic knowledge of algebra is useful. For the
project work, students benefit from having basic hands-on skills using Linux and, ideally, basic
knowledge of a scripting language such as Python (the official Python documentation is available
online).

Usability and Relationship to other Modules

This module introduces components that are widely used by modern applications and information
systems. Students can apply their knowledge in the software engineering module. This module serves
as a default advanced level minor module.

Intended Learning Outcomes

No Competence ILO
1 Read Read and write ER diagrams.
2 Design Design and normalize schemas for relational databases.
3 Write Write SQL queries and understand their evaluation by a database

server.
4 Know Know common tuning methods in relational databases.
5 Explain Explain the concept of transactions and how to use transactions in

application design.
6 Explain Explain core security and privacy issues in the context of databases.
7 Describe Describe the differences of selected NoSQL data models and make a

requirement-driven choice.
8 Describe Describe the concept of datacubes and how databases can support

it.
9 Develop Develop database-backed Web-enabled information systems,

considering security aspects.

Indicative Literature

• Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom: Database Systems: The Complete
Book. 2nd edition, Pearson, 2008.

• Elvis C. Foster, Shripad V. Godbole: Database Systems. O’Reilly, 2014.
• Miguel Grinberg: Flask Web Development: Developing Web Applications with Python. O’Reilly,

2018.
• Jon Duckett: PHP & MySQL: Server-side Web Development. Wiley, 2022.

Entry Requirements

Prerequisites Algorithms and Data Structures
Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

41

Databases Written
Examination

120
minutes

67 45% 1-8

Databases - Project Project
Assessment

 33 45% 9

Module Achievements: None

I I I I

42

7.7 Software Engineering

Module Name Software Engineering
Module Code 2025-CO-561
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 4
- 2025-Minor-CS-BSc 4

Mandatory Elective status for:
- 2025-RIS-BSc 4

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Peter Baumann

Forms of Learning and Teaching
Class Attendance 35

Independent Study 10
Development Work 132.5

Exam Preparation 10
Workload Hours 187.5 hours

Module Components Number Type CP
Software Engineering CO-561-A Lecture 2.5
Software Engineering Project CO-561-B Project 5

Module Description

This module is an introduction to software engineering and object-oriented software design. The
lecture focuses on software quality and the methods to achieve and maintain it in environments of
"multi-person construction of multi-version software." Based on their pre-existing knowledge of an
object-oriented programming language, students are familiarized with software architectures, design
patterns and frameworks, software components and middleware, Unified Modeling Language (UML)-
based modelling, and validation by testing. Furthermore, the course addresses the more organizational
topics of project management and version control.

The lectures are accompanied by a software project in which students have to develop a software
solution to a given problem. The problem is described from the viewpoint of a customer and students
working in teams have to execute a whole software project lifecycle. The teams have to create a
suitable software architecture and software design, implement the components, and integrate the
components. The teams have to ensure that basic quality requirements for the solution and the
components are defined and satisfied. The students produce various artifacts such as design
documents, source code, test cases and user documentation. All artifacts need to be maintained in a
version control system and the commits should allow the instructor and other team members to track
in a meaningful way the changes and who has been contributing them.

I I

43

Recommended Knowledge

Students are expected to be able to develop software using an object-oriented programming language
such as C++, and they should have access to a Linux system and associated software development
tools.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand and apply object-oriented design patterns
2 Read Read and write UML diagrams
3 Contrast Contrast the benefits and drawbacks of different software

development models
4 Design Design and plan a larger software project involving a team

development effort
5 Translate Translate requirements formulated by a customer into computer

science terminology
6 Evaluate Evaluate the applicability of different software engineering models

for a given software development project
7 Assess Assess the quality of a software design and its implementation
8 Apply Apply tools that assist in the various stages of a software

development process
9 Work Work effectively in a team toward the goals of the team

Indicative Literature

• Ian Sommerville: Software Engineering, Pearson, 2010.
• Roger Pressman: Software Engineering – a Practitioner's Approach, McGraw-Hill, 2014.

Entry Requirements

Prerequisites Databases
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Software Engineering Written
Examination

60
minutes

33 45% 1-3

Software Engineering
Project

Project
Assessment

 67 45% 4-9

Module Achievements: None

44

7.8 Operating Systems

Module Name Operating Systems
Module Code 2025-CO-562
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 3
- 2025-SDT-BSc 3

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 52.5

Exam Preparation 20
Independent Study 115

Workload Hours 187.5 hours

Module Components Number Type CP
Operating Systems CO-562-A Lecture 7.5

Module Description

This module introduces concepts and principles used by operating systems to provide programming
abstractions that enable an efficient and robust execution of application programs. Students will gain
an understanding of how an operating system kernel manages hardware components and how it
provides abstractions such as processes, threads, virtual memory, file systems, and inter-process
communication facilities. Students learn the principles of event-driven and concurrent programming
and the mechanisms that are necessary to solve synchronization and coordination problems, thereby
avoiding race conditions, deadlocks, and resource starvation. The Linux kernel and runtime system will
be used throughout the course to illustrate how key ideas and concepts have been implemented and
how application programs can use them.

Recommended Knowledge

Students are expected to understand data representation and program execution at the machine
instruction level as covered in the module Digital Systems and Computer Architecture.

Students are expected to have a working Linux installation, which allows them to compile and run
sample programs provided by the instructor and to implement their own solutions for homework
assignments.

Usability and Relationship to other Modules

45

This module enables students to write programs that make efficient use of the services provided by
the operating system kernel. This is particularly important for advanced modules on computer
networks, robotics, and embedded systems.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain the differences between processes, threads, application

programs, libraries, and operating system kernels.
2 Describe Describe well-known mutual exclusion and coordination problems.
3 Use Use semaphores to achieve mutual exclusion and solve coordination

problems.
4 Use Use mutual exclusion locks and condition variables to solve

synchronization and coordination problems.
5 Illustrate Illustrate how deadlocks can be avoided, detected, and resolved.
6 Summarize Summarize the different mechanisms to realize virtual memory and

their trade-offs.
7 Solve Solve basic inter-process communication problems using signals and

pipes.
8 Use Use socket inter-process communication primitives.
9 Multiplex Multiplex I/O activities using suitable system calls and libraries.
10 Describe Describe file system programming interfaces and the design of file

systems at the operating system kernel level.
11 Explain Explain how memory mapping can improve I/O performance.
12 Restate Restate the functionality of a linker and the difference between

static linking and dynamic linking.
13 Outline Outline how different device types are supported by Unix-like

kernels.
14 Discuss Discuss virtualization mechanisms such as containers or virtual

machines.

Indicative Literature

• Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Applied Operating System Concepts, John
Wiley, 2000.

• Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, Prentice Hall, 4th edition,
Pearson, 2015.

• William Stallings: Operating Systems: Internals and Design Principles, 8th edition, Pearson,
2014.

• Robert Love: Linux Kernel Development, 3rd edition, Addison Wesley, 2010.
• Robert Love: Linux System Programming: Talking Directly to the Kernel and C Library, 2nd

edition, O'Reilly, 2013.

Entry Requirements

Prerequisites -Core Algorithms and Data Structures OR
Algorithms and Data Structures
-Digital Systems and Computer Architecture

46

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Operating Systems Written
Examination

120
minutes

100 45% 1-14

Module Achievements: 50% of the assignments correctly solved. This module includes hands-on
assignments so that students can develop their system programming skills. The module achievement
ensures that a sufficient level of practical system programming skills has been obtained.

I I I I

47

7.9 Machine Learning

Module Name Machine Learning
Module Code 2025-CO-541
Module ECTS 5
Study Semester Mandatory status for:

- 2025-MMDA-BSc 4
- 2025-RIS-BSc 4
- 2025-SDT-BSc 4
-2025-Minor-Software Development 4

Mandatory Elective status for:
- 2025-CS-BSc 4
- 2025-PHDS-BSc 4
- 2025-IEM-BSc 6

Duration 1 Semester
Program Affiliation 2025-RIS-BSc (Robotics and Intelligent

Systems)
Module Coordinator(s) Prof. Dr. Francesco Maurelli

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Machine Learning CO-541-A Lecture 5

Module Description

Machine learning (ML) concerns algorithms that are fed with (large quantities of) real-world data, and
which return a compressed "model" of the data. An example is the "world model" of a robot; the input
data are sensor data streams, from which the robot learns a model of its environment, which is needed,
for instance, for navigation. Another example is a spoken language model; the input data are speech
recordings, from which ML methods build a model of spoken English; this is useful, for instance, in
automated speech recognition systems. There exist many formalisms in which such models can be
cast, and an equally large diversity of learning algorithms. However, there is a relatively small number
of fundamental challenges that are common to all of these formalisms and algorithms. The lectures
introduce such fundamental concepts and illustrate them with a choice of elementary model
formalisms (linear classifiers and regressors, radial basis function networks, clustering, online adaptive
filters, neural networks, or hidden Markov models). Furthermore, the lectures also (re-)introduce
required mathematical material from probability theory and linear algebra.

Recommended Knowledge

48

Usability and Relationship to other Modules

- This module gives a thorough introduction to the basics of machine learning. It complements the
Artificial Intelligence module.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand the notion of probability spaces and random variables
2 Understand Understand basic linear modeling and estimation techniques
3 Understand Understand the fundamental nature of the "curse of dimensionality"
4 Understand Understand the fundamental nature of the bias-variance problem

and standard coping strategies
5 Use Use elementary classification learning methods (linear

discrimination, radial basis function networks, multilayer
perceptrons)

6 Implement Implement an end-to-end learning suite, including feature
extraction and objective function optimization with regularization
based on cross-validation

Indicative Literature

• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edition, Springer, 2008.

• S. Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University
Press, 2014.

• C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
• T.M. Mitchell, Machine Learning, Mc Graw Hill, India, 2017.

Entry Requirements

Prerequisites Probability and Random Processes
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Machine Learning Written
Examination

120
minutes

100 45% 1-6

Module Achievements: None

I I I I

49

7.10 Functional Programming

Module Name Functional Programming
Module Code 2025-SDT-202
Module ECTS 5
Study Semester Mandatory status for:

- 2025-Minor-Software Development 3

Mandatory Elective status for:
- 2025-CS-BSc 3
- 2025-SDT-BSc 3

Duration 1 Semester
Program Affiliation 2025-SDT-BSc (Software, Data and

Technology)
Module Coordinator(s) Prof. Dr. Alexander Omelchenko

Forms of Learning and Teaching
Lecture 17.5
Tutorial 17.5

Independent Study 70
Exam Preparation 20

Workload Hours 125 hours

Module Components Number Type CP
Functional Programming SDT-202-A Lecture 2.5
Functional Programming Tutorial SDT-202-B Tutorial 2.5

Module Description

The goal of this discipline is to provide students with a solid foundation in functional programming
principles and techniques, focusing on the theoretical knowledge and practical skills required to
effectively work with functional languages. The module explores the core concepts, language
structures, syntax, and semantic constructs of functional programming languages, emphasizing their
applicability in modern software development.

Content:

- Fundamentals of functional programming: lambda calculus and combinatory logic.

- Haskell programming language: syntax, semantics, standard library.

- Manage effects using applicative functors and monads.

- Type systems of functional languages.

Recommended Knowledge

I I

50

It is recommended that students install a Linux system such as Ubuntu on their notebooks and that
they become familiar with basic tools such as editors (vim or emacs) and the basics of a shell. The
Glasgow Haskell Compiler (GHC) will be used for implementing Haskell programs.

Usability and Relationship to other Modules

Familiarity with functional programming concepts and principles is increasingly important in fields such
as data science, artificial intelligence, and software development. This module provides a solid
foundation in functional programming techniques and languages, which are essential for advanced
modules in computer science and data science. Additionally, this module introduces advanced
concepts of functional programming that are needed in advanced programming-oriented modules in
the 2nd and 3rd years of the SDT program.

Intended Learning Outcomes

No Competence ILO
1 Collaborate Collaborate effectively within a team in the IT field, utilizing project

management tools, communication skills, and software for team
project activities to jointly develop projects.

2 Compare Compare and contrast the advantages and disadvantages of the
functional programming paradigm, and apply functional
programming techniques to solve applied problems using languages
such as Haskell

3 Understand Understand and utilize the basic type systems of functional
languages and their extensions with polymorphic and recursive
types to create efficient, well-structured code in a functional
programming context

4 Choose Choose between lazy and eager evaluation strategies based on the
specific requirements of a problem or application, and implement
software solutions using a functional programming paradigm.

5 Explain Explain the computational model underlying functional
programming and implement algorithms in functional languages
using key concepts such as immutable data structures, recursion,
and pattern matching

6 Employ Employ generic annotations and type classes to describe interfaces
and ensure static control, promoting code reusability and
maintainability in functional programming projects

Indicative Literature

• Miran Lipovača. Learn You a Haskell for Great Good.
• O'Sullivan, Bryan, John Goerzen, and Don Stewart. Real World Haskell. O'Reilly Media, Inc.,

2008.
• Hughes, John. "Why functional programming matters." The computer journal 32.2 (1989): 98-

107.

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR

51

Algorithms and Data Structures
Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Functional Programming Written
Examination

60
Minutes

50 45% All
theoret
ical
ILOs of
the
module

Functional Programming
Tutorial

Program Code 50 45% All
practic
al ILOs
of the
module

Module Achievements: None

52

7.11 Automata, Computability, and Complexity

Module Name Automata, Computability, and Complexity
Module Code 2025-CO-563
Module ECTS 7.5
Study Semester Mandatory status for:

- 2025-CS-BSc 4

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jakob Suchan

Forms of Learning and Teaching
Class Attendance 52.5

Exam Preparation 20
Independent Study 115

Workload Hours 187.5 hours

Module Components Number Type CP
Automata, Computability, and
Complexity

CO-563-A Lecture 7.5

Module Description

This module introduces the mathematical theory of computation. Several types of abstract
computational machines (called automata) are introduced together with the associated theory of
formal languages. A formal language is a set of words over a defined alphabet that are well-formed
according to a specific set of rules, called the grammar of the language. After studying the relationship
between automata models and classes of formal languages, this course addresses the fundamental
question "What problems can a computer possibly solve?'' by characterizing those solvable problems,
equivalently, through Turing machines, random access machines, recursive functions and lambda
calculus. A full answer to the related question, "How many computational resources are needed for
solving a given problem?'' is not known today. However, the basic outlines of today's theory of
computational complexity will be presented up to the most famous open problem in computer science,
namely the "P = NP'' question: if a computer could guess the right answer to a computational problem
(and only needs to check its correctness), would that computer be faster than another one that cannot
guess the right solution? This may seem to be a ridiculously obvious case of a clear YES answer, but in
fact it is considered by many to be the deepest open question in contemporary mathematics (and
computer science, of course).

This module provides the core education in theoretical computer science. The material covered in this
module gives students access to any field in computer science, which is based on discrete-
mathematical formal foundations, such as the theory of automata and formal languages or compiler
design.

I I

53

Usability and Relationship to other Modules

This module provides the core education in theoretical computer science

Intended Learning Outcomes

No Competence ILO
1 Explain Explain discrete automata models (finite state machines, pushdown

automata, Turing machines).
2 Describe Describe the Chomsky hierarchy of formal languages and classify

formal languages.
3 Characterize Characterize classes of formal languages by automata models and

grammars.
4 Define Define formal models of computation such as Turing machines.
5 Explain Explain the equivalences of formal models of computation.
6 Illustrate Illustrate the nature and impact of the Church-Turing hypothesis.
7 Construct Construct diagonalization arguments.
8 Give Give examples of functions that are not computable.
9 Contrast Contrast central complexity classes (L, P, NP, EXP...).
10 Apply Apply reduction techniques both for decidability and complexity.
11 Create Create a reduction-based check of whether a problem is NP-

complete.

Indicative Literature

• Michael Sipser: Introduction to the Theory of Computation 2nd edition PWS Publishing
Company 1997 (Primary Literature)

• John Hopcroft Rajeev Motwani Jeffrey Ullman: Introduction to Automata Theory Languages
and Computation 3rd edition Pearson 2006

Entry Requirements

Prerequisites Mathematical Foundations of Computer
Science

Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Automata, Computability,
and Complexity

Written
Examination

120
minutes

100 45% 1-11

Module Achievements: None

54

7.12 Legal and Ethical Aspects of Computer Science

Module Name Legal and Ethical Aspects of Computer
Science

Module Code 2025-CO-565
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 3

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 175

Independent Study 35
Poster Preparation 10

Workload Hours 220 hours

Module Components Number Type CP
Legal and Ethical Aspects of Computer
Science

CO-565-A Lecture 2.5

Module Description

Information technology has a profound impact on society. This module introduces the legal and ethical
frameworks that are relevant for computer scientists taking up qualified employment or joining
advanced study programs leading to a career in education and research. The module provides an
overview of intellectual property rights and their regulations, data protection regulations, and ethical
frameworks defined by professional organizations. Students are confronted with a collection of case
studies to develop sensitivity to legal and ethical dilemmas with which people are sometimes faced
during the construction or operation of advanced information processing systems.

Intended Learning Outcomes

No Competence ILO
1 Recall Recall principles of data protection regulations such as the European

General Data Protection Regulation (GDPR).
2 Identify Identify components of an IT system managing sensitive data that

needs protection.
3 Summarize Summarize regulations concerning intellectual property rights.
4 Analyze Analyze the applicability of different closed-source and open-source

software licensing models.

I I

55

5 Describe Describe computer science ethics and ethical frameworks defined
by professional organizations.

6 Illustrate Illustrate ethical dilemma resulting from the use of information
processing systems.

7 Discuss Discuss the interplay of legal frameworks and ethical principles and
the design of information processing systems.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Legal and Ethical Aspects
of Computer Science

Poster
Presentation

10
minutes

 45%

Module Achievements: None

56

7.13 Academic Skills in Computer Science

Module Name Academic Skills in Computer Science
Module Code 2025-CO-567
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 4

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Dr. Kinga Lipskoch

Forms of Learning and Teaching
Class Attendance 7.5

Independent Study 25
Presentation 20

Workload Hours 52.5 hours

Module Components Number Type CP
Academic Skills in Computer Science CO-567-A Seminar 2.5

Module Description

This module introduces students to basic skills in reading, understanding, and evaluating scientific
articles, and in presenting scientific results in presentations and publications. During the seminar,
students will study some classic computer science papers with a special focus on how the papers are
organized, written and how they present scientific results. Students will develop and discuss guidelines
for effective writing and they will learn about techniques and tools that can be used to effectively
search for literature relevant to a certain topic. Finally, students will be introduced to peer review
processes.

As a project, students will emulate the workflow of a scientific conference to demonstrate the
academic skills they have learned.

Intended Learning Outcomes

No Competence ILO
1 Effectively Effectively find research literature for a given topic.
2 Critically Critically read and assess research papers.
3 Present Present a research result in the structure of a scientific paper.
4 Describe Describe how scientific peer review processes work.
5 Orally Orally communicate research results effectively to a scientific

community.

57

6 Describe Describe common pitfalls in the presentation of data, algorithms, or
math.

7 Discuss Discuss ethical issues and guidelines related to scientific
publications.

Indicative Literature

• Peter Zobel: Writing for Computer Science, 3rd edition, Springer, 2014.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Academic Skills in
Computer Science

Project
Assessment

 100 45% 1-7

Module Achievements: None

I I I I

58

7.14 Computer Networks

Module Name Computer Networks
Module Code 2025-CO-564
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 5
- 2025-SDT-BSc 5

Duration 1 Semester
Program Affiliation 2025-SDT-BSc (Software, Data and

Technology)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 35

Independent Study 70
Exam Preparation 20

Workload Hours 125 hours

Module Components Number Type CP
Computer Networks CO-564-A Lecture 5

Module Description

Computer networks such as the Internet play a critical role in today's connected world. This module
discusses the technology of Internet services in depth to enable students to understand the core issues
involved in the design of modern computer networks. Fundamental algorithms and principles are
explained in the context of existing protocols as they are used in today's Internet. Students taking this
module should finally understand the technical complexity behind everyday online services such as
Google or YouTube.

Students taking this module will understand how computer networks work, and they will be able to
assess communication networks, including aspects such as performance but also robustness and
security. Students will learn that the design of communication networks is not only influenced by
technical constraints but also by the necessity to define common standards, which often require
engineering decisions that reflect non-technical requirements.

Recommended Knowledge

Students are expected to be familiar with the C programming language and to learn basics of higher-
level scripting languages such as Python (the official Python documentation is available on
https://docs.python.org/)

Usability and Relationship to other Modules

59

The module should be taken together with the module Operating Systems, because a significant
portion of the communication technology is implemented at the operating system level. An
understanding of operating system concepts and abstractions will help students to understand how
computer network technology is commonly implemented and made available to applications. The
specialization module Distributed Algorithms discusses algorithms for solving problems commonly
found in distributed systems that use computer networks to exchange information. The module Secure
and Dependable Systems introduces cryptographic mechanisms that can be used to secure
communication over computer networks.

Intended Learning Outcomes

No Competence ILO
1 Recall Recall layering principles and the OSI reference model.
2 Articulate Articulate the organization of the Internet and the organization

involved in providing Internet services.
3 Describe Describe media access control, flow control, and congestion control

mechanisms
4 Explain Explain how local area networks differ from global networks.
5 Illustrate Illustrate how frames are forwarded in local area networks.
6 Contrast Contrast addressing mechanisms and translations between

addresses used at different layers.
7 Demonstrate Demonstrate how the Internet network layer forwards packets.
8 Present Present how routing algorithms and protocols are used to

determine and select routes.
9 Describe Describe how the Internet transport layer provides different end-to-

end services.
10 Demonstrate Demonstrate how names are resolved to addresses and vice versa.
11 Summarize Summarize how application layer protocols send and access

electronic mail or access resources on the world-wide web.
12 Design Design and implement simple application layer protocols.
13 Recognize Recognize to which extent computer networks are fragile and

evaluate strategies to cope with the fragility.
14 Analyze Analyze traffic traces produced by a given computer network.

Indicative Literature

• James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the
Internet, 3rd Edition, Addison-Wesley, 2004.

• Andrew S. Tanenbaum: Computer Networks, 4th Edition, Prentice Hall, 2002.

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR
Algorithms and Data Structures

Co-requisites Operating Systems
Additional Remarks

60

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Computer Networks Written
Examination

120
minutes

100 45% 1-14

Module Achievements: None

I I I I

61

7.15 Secure and Dependable Systems

Module Name Secure and Dependable Systems
Module Code 2025-CO-566
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 5
- Mandatory for Specialization Cybersecurity

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Secure and Dependable Systems CO-566-A Lecture 5

Module Description

This module introduces students to the fundamentals of computer security and techniques used to
build and analyze dependable systems. This is an important topic given that computer systems are
increasingly embedded in everyday objects (such as light bulbs) and taking over important control
functions (such as driving cars). Furthermore, computer systems control complex communication
systems that form critical infrastructure of the modern globalized world. Proper protection of
information requires an applied understanding of cryptography and how cryptographic primitives are
used to secure data and information exchanges. The aim of this module is to make students aware of
what types of security vulnerabilities may arise in computing systems and how to prevent, identify,
and fix them.

Recommended Knowledge

Usability and Relationship to other Modules

Intended Learning Outcomes

No Competence ILO
1 Recall Recall dependability terminology and concepts.

62

2 Explain Explain control flow attacks and injection attacks and defense
mechanisms.

3 Describe Describe network data plane and control plane attacks and defense
mechanisms.

4 Understand Understand symmetric and asymmetric cryptographic algorithms.
5 Explain Explain how digital signatures and public key infrastructures work.
6 Analyze Analyze key exchange protocols for weaknesses.
7 Describe Describe secure network protocols (e.g., PGP, TLS, and SSH).
8 Recall Recall anonymity terminology and concepts.
9 Discuss Discuss information hiding mechanisms (e.g., steganography, and

watermarking).
10 Illustrate Illustrate anonymization techniques (mixes, onion routing).

Indicative Literature

• Bruce Schneier: Applied Cryptography 20th Anniversary Edition Wiley 2015
• WmA Conklin Gregory White: Principles of Computer Security 5th Edition McGraw-Hill 2018
• Simon Singh: The Code Book: Science of Secrecy from Ancient Egypt to Quantum Cryptography

Anchor Books 2000

Entry Requirements

Prerequisites Operating Systems
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Secure and Dependable
Systems

Written
Examination

120
minutes

100 45% 1-10

Module Achievements: None

I I I I

63

7.16 Security Monitoring and Incident Response

Module Name Security Monitoring and Incident Response
Module Code 2025-CA-S-CS-807
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6
- Mandatory for Specialization Cybersecurity

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 35

Independent Study 70
Exam Preparation 20

Workload Hours 125 hours

Module Components Number Type CP
Security Monitoring and Incident
Response

CA-CS-807 Lecture 5

Module Description

Cyber threats are an ever-present risk in today’s interconnected world, making security monitoring
and incident response essential disciplines in cybersecurity. This module explores the technologies,
strategies, and frameworks used to detect, analyze, and respond to security incidents in modern IT
environments. Students will gain an in-depth understanding of security monitoring tools, threat
intelligence, and forensic techniques while learning how real-world cyberattacks unfold.

By taking this module, students will develop the ability to assess security events, investigate breaches,
and implement effective response strategies. They will learn how to use open-source tools for log
analysis, intrusion detection, and incident handling, gaining practical experience through hands-on
exercises. The course also emphasizes the role of compliance, legal considerations, and
communication in incident response. Students will understand that effective security monitoring and
response require not only technical expertise but also collaboration, strategic decision-making, and
adherence to regulatory standards.

Students are expected to be familiar with operating systems security mechanisms (including object
ownership model, access control lists, and privilege elevation), to understand networking protocols
and layers, and to be familiar with regular expressions. Taking the course “Computer Networks” is
recommended.

Intended Learning Outcomes

I I

64

No Competence ILO
1 Explain Explain the need for security monitoring.
2 Understand Understand the threat landscape and attack vectors.
3 Identify Identify and analyze security threats using frameworks like MITRE

ATT&CK and the Cyber Kill Chain.
4 Explain Explain the purpose of Security Information and Event Management

(SIEM) tools to monitor, detect, and correlate security events.
5 Conduct Conduct log analysis and anomaly detection across network,

endpoint, and cloud environments.
6 Implement Implement incident response procedures based on established

frameworks like NIST 800-61 and ISO 27035.
7 Apply Apply containment, eradication, and recovery strategies to mitigate

security incidents.
8 Anticipate Anticipate and respond to cyber threats using threat intelligence

sources.
9 Apply Apply digital forensics techniques to investigate incidents, including

memory, disk, and network traffic analysis.
10 Communicate Communicate incident findings effectively to technical teams,

executives, and regulatory bodies.
11 Understand Understand legal, ethical, and regulatory considerations in incident

response, including GDPR and ISO 27001:2022

Indicative Literature

• Richard Bejtlich, The Practice of Network Security Monitoring: Understanding Incident
Detection and Response, No Starch Press, 2013.

• Eric Thompson, Cybersecurity Incident Response: How to Contain, Eradicate, and Recover from
Incidents, Apress, 2018.

Entry Requirements

Prerequisites Operating Systems
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Security Monitoring and
Incident Response

Written
Examination

120
minutes

100 45%

Module Achievements: None

I I I I

65

7.17 Ethical Hacking and Offensive Security

Module Name Ethical Hacking and Offensive Security
Module Code 2025-CA-S-CS-808
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6
- Mandatory for Specialization Cybersecurity

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 17.5

Independent Study 47.5
Laboratory 35

Report Preparation 25
Workload Hours 125 hours

Module Components Number Type CP
Ethical Hacking and Offensive Security CA-CS-808 Laboratory 5

Module Description

This module introduces students to the principles and practices of ethical hacking, focusing on how
attackers exploit weaknesses in systems, networks, and applications. It provides a structured and
hands-on approach to offensive security, teaching students how to simulate cyberattacks in a
controlled, lawful, and ethical manner. Core topics include reconnaissance, vulnerability scanning,
exploitation, privilege escalation, and post-exploitation techniques, as well as specialized areas such
as web application security, wireless attacks, and social engineering. The course aligns with industry
frameworks like MITRE ATT&CK and emphasizes the responsible use of offensive tools, legal
boundaries, and professional reporting standards.

The educational aim is to equip students with the technical skills and mindset needed to think like an
attacker to better defend systems. Students will develop proficiency in using common penetration
testing tools and gain experience in conducting end-to-end simulated attacks. Emphasis is placed on
the ethical implications of offensive security, the importance of defined scope and consent, and the
value of red teaming in real-world security assessments. By the end of the module, students will be
prepared to contribute to penetration testing engagements or perform them under supervision.

Before taking a course in Ethical Hacking and Offensive Security, students are generally expected to
have a foundational understanding of computer networks, be familiar with both Linux and Windows
operating systems, command-line interfaces, file systems, and user permissions, and have a working

66

knowledge of basic cybersecurity concepts, such as common attack types, system vulnerabilities, and
defensive mechanisms like firewalls and intrusion detection systems. A reasonable level of scripting or
programming experience, particularly in languages like Python or PowerShell, is important for
automating tasks or writing simple exploits.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand the legal, ethical, and professional responsibilities

involved in ethical hacking and penetration testing.
2 Conduct Conduct reconnaissance and information-gathering activities using

open-source intelligence (OSINT) techniques.
3 Perform Perform vulnerability scanning and enumeration of systems,

networks, and applications.
4 Exploit Exploit common security weaknesses in networks, operating

systems, and web applications using industry-standard tools.
5 Apply Apply privilege escalation techniques and maintain access in

simulated attack environments.
6 Evaluate Evaluate and exploit vulnerabilities identified in web applications,

referencing the OWASP Top 10.
7 Simulate Simulate wireless and social engineering attacks within ethical

boundaries and defined scopes.
8 Automate Automate and conduct various stages of offensive security testing

using tools such as Metasploit, Burp Suite, and Nmap.
9 Apply Apply the MITRE ATT&CK framework to structure and document

offensive security tactics and techniques.
10 Communicate Communicate security findings effectively through structured

technical reports and executive summaries.
11 Demonstrate Demonstrate the ability to plan, execute, and document an end-to-

end penetration test within a controlled lab environment.
12 Reflect Reflect on the role of offensive security within broader cybersecurity

strategies and defense mechanisms.

Indicative Literature

• Stuttard, D. & Pinto, M. (2017). The Web Application Hacker’s Handbook (2nd ed.). Wiley.
• Weidman, G. (2014). Penetration Testing: A Hands-On Introduction to Hacking. No Starch

Press.

Entry Requirements

Prerequisites Secure and Dependable Systems
Co-requisites None
Additional Remarks None

Assessment and Completion

67

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Ethical Hacking and
Offensive Security

Laboratory
Report

 100 45% 1-12

Module Achievements: None

68

7.18 Advanced Operating Systems

Module Name Advanced Opera�ng Systems
Module Code 2025-CA-S-CS-810
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elec�ve status for:
- 2025-CS-BSc 5

Dura�on 1 Semester
Program Affilia�on 2025-CS-BSc (Computer Science)
Module Coordinator(s)

Forms of Learning and Teaching
Class Atendance 35

Independent Study 70
Exam Prepara�on 20

Workload Hours 125 hours

Module Components Number Type CP
Advanced Opera�ng Systems CA-CS-810 Lecture 5

Module Description

This advanced course explores the fundamental principles and modern advances in opera�ng systems
beyond introductory material, focusing on the architectural choices, performance trade-offs, and
system-level abstrac�ons that are at the basis of robust and scalable systems. The course is centered
on the analy�cal and experimental evalua�on of algorithms and design strategies adopted in state-of-
the-art systems, including mul�core, distributed, and real-�me systems.

The course topics include:

- recap of OS architectures, kernel modes;

- boot sequences and ini�aliza�on of the kernel and user-space ini�aliza�on;

- advanced process and thread models and context switching for mul�core systems;

- real-�me scheduling, mul�processor scheduling, load balancing;

- wait-free/lock-free synchroniza�on techniques and read-copy-update mechanisms;

- modern efficient inter-process communica�on facili�es;

- memory management suppor�ng transla�on lookaside buffers, huge pages, non-uniform memory
access;

- mandatory and discre�onary access control, memory safety, isola�on, namespaces, and container
security.

69

Intended Learning Outcomes

No Competence ILO
1 Explain Explain the fundamental concepts and principles of modern

opera�ng system design, including mul�core and mul�threading
architectures, resource management, and process synchroniza�on.

2 Analyze Analyze the trade-offs and design decisions involved in developing
efficient and scalable opera�ng system components, considering
factors such as performance, reliability, and security.

3 Evaluate Evaluate the performance and effec�veness of various scheduling
algorithms, memory management techniques, and synchroniza�on
mechanisms in the context of real-world opera�ng system
scenarios.

4 Determine Determine the appropriate strategies for managing hardware
resources and devices, such as interrupt handling, device drivers,
and system calls, to ensure op�mal system performance and
func�onality.

5 Describe Describe the challenges and solu�ons associated with developing
and debugging complex opera�ng system components, including
techniques for troubleshoo�ng and op�mizing system behavior.

6 Ability Ability to design, implement, and op�mize advanced opera�ng
system components, such as process schedulers, memory
managers, and synchroniza�on primi�ves, using modern
programming languages and tools.

7 Communicate Communicate effec�vely, both orally and in wri�ng, the key
concepts, design decisions, and implementa�on details of
advanced opera�ng system components to technical and non-
technical audiences.

Indicative Literature

• Silberschatz, Galvin, Gagne: Opera�ng System Concepts, 8th edi�on, John Wiley & Sons,
2008.

• Robert Love: Linux Kernel Development, 3rd edi�on, Addison-Wesley Professional, 2010.
• Anderson, Dahlin: Opera�ng Systems: Principles and Prac�ce.
• Selected recent papers (SIGOPS, USENIX, EuroSys, ACM Queue).

Entry Requirements

Prerequisites Opera�ng Systems
Co-requisites None
Addi�onal Remarks None

Assessment and Completion

Components Examina�on
Type

Dura�on
/Length

Weight
(%)

Minimum ILOs

70

Advanced Opera�ng
Systems

Writen
Examina�on

120
minutes

100 45% 1-7

Module Achievements: None

71

7.19 Linux Kernel Internals

Module Name Linux Kernel Internals
Module Code 2025-CA-S-CS-809
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elec�ve status for:
- 2025-CS-BSc 6

Dura�on 1 Semester
Program Affilia�on 2025-CS-BSc (Computer Science)
Module Coordinator(s)

Forms of Learning and Teaching
Class Atendance 35

Independent Study 70
Exam Prepara�on 20

Workload Hours 125 hours

Module Components Number Type CP
Linux Kernel Internals CA-CS-809 Lecture 5

Module Description

This course provides an in-depth, technical, and hands-on inves�ga�on of the internal structure and
evolu�on of the Linux kernel. Students are guided through the key kernel subsystems, design
ra�onales, and interfaces. Students will learn how the kernel manages processes, memory, filesystems,
devices, and networking. The module has the approach of presen�ng the overall architectural idea and
then going deep into the source code to promote a concrete and prac�cal understanding of kernel
programming, debugging, and performance profiling.

In par�cular, the course will cover:

- overall Linux kernel architecture;

- Linux kernel source code and the kernel build system;

- Linux boot and ini�aliza�on sequence;

- task management covering processes, threads, kernel threads, and their scheduling;

- interrupts and excep�ons, botom halves and tasklets;

- memory management beyond simple physical/virtual mappings, slab/slub allocators, NUMA support;

- Linux virtual file system layer, filesystems (e.g., ext4, Btrfs), journaling, pseudo filesystems (e.g., proc,
udev, sysfs);

- Linux socket layer, protocol stacks, packet filtering and address transla�on (e.g., ne�ilter);

72

- synchroniza�on in the kernel: spinlocks, semaphores, read-copy-update implementa�ons;

- Linux debugging/profiling techniques such as printk, dmesg, kprobes, perf, �race

Intended Learning Outcomes

No Competence ILO
1 Explain Explain the modular or monolithic architectures of the Linux kernel,

including the advantages and disadvantages of each approach and
their impact on kernel design and performance

2 Analyze Analyze the mechanisms used by the Linux kernel to manage
hardware resources, such as device drivers, interrupt handling, and
system calls, and evaluate their effec�veness in ensuring efficient
and reliable system opera�on.

3 Evaluate Evaluate the Linux kernel's support for mul�-tasking, concurrency,
and inter-process communica�on, and determine the appropriate
synchroniza�on primi�ves and techniques for developing reliable
and efficient kernel-level code.

4 Describe Describe the Linux kernel's memory management, file systems, and
networking subsystems, and explain how they interact with each
other and with user-space applica�ons to provide essen�al system
services.

5 Demonstrate Demonstrate the ability to develop, debug, and op�mize kernel
modules and device drivers using the Linux kernel's programming
interfaces and tools, such as the Linux Device Model and the
kernel's debugging facili�es

Indicative Literature

• Robert Love: Linux Kernel Development, 3rd edi�on, Addison-Wesley Professional, 2010.
• Daniel P. Bovet and Marco Cesa�: Understanding the Linux Kernel, 3rd edi�on, O'Reilly

Media, 2005.
• Greg Kroah-Hartman: Linux Kernel in a Nutshell, O'Reilly and Associates, 2007.
• Linux kernel source documenta�on, LWN.net ar�cles, kernel mailing lists

Entry Requirements

Prerequisites Opera�ng Systems
Computer Networks

Co-requisites None
Addi�onal Remarks

Assessment and Completion

Components Examina�on
Type

Dura�on
/Length

Weight
(%)

Minimum ILOs

Linux Kernel Internals Writen
Examina�on

120
minutes

100 45% 1-5

I I I I

73

Module Achievements: None

74

7.20 Computer Graphics

Module Name Computer Graphics
Module Code 2025-CA-S-CS-801
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-RIS-BSc 5
- 2025-CS-BSc 5

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 35

Independent Study 70
Exam Preparation 20

Workload Hours 125 hours

Module Components Number Type CP
Computer Graphics CA-CS-801 Lecture 5

Module Description

This module deals with the digital synthesis and manipulation of visual content. The creation process
of computer graphics spans from the creation of a three-dimensional (3D) scene to displaying or storing
it digitally. Prominent tasks in computer graphics are geometry processing, rendering, and animation.
Geometry processing is concerned with object representations such as surfaces and their modeling.
Rendering is concerned with transforming a model of the virtual world into a set of pixels by applying
models of light propagation and sampling algorithms. Animation is concerned with descriptions of
objects that move or deform over time. This is an introductory module covering the concepts and
techniques of 3D (interactive) computer graphics. It covers mathematical foundations, basic
algorithms and principles, and some advanced methods and concepts. An introduction to the
implementation of simple programs using a mainstream computer graphics library completes this
module.

Usability and Relationship to other Modules

Students with a strong interest in graphical user interfaces are encouraged to also select the Human–
Computer Interaction specialization module, which discusses among other things how computer
graphics can be used as a component of interactive graphical user interfaces.

Intended Learning Outcomes

No Competence ILO

75

1 Construct Construct 3D geometry representations.
2 Apply Apply 3D transformations.
3 Understand Understand the algorithms and optimizations applied by graphics

rendering systems.
4 Explain Explain the stages of modern computer graphics programmable

pipelines
5 Implement Implement simple computer graphics applications using graphics

frameworks such as OpenGL.
6 Illustrate Illustrate the techniques used to create animations.

Indicative Literature

• John Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K.
Feiner, Kurt Akeley, Computer Graphics - Principles and Practice, 3rd edition, Addison-Wesley,
2013.

• Peter Shirley, Steve Marschner, Fundamentals of Computer Graphics, 4th edition, Taylor and
Francis Ltd, 2016.

• Matt Pharr, Wenzel Jakob, Greg Humphreys, Physically Based Rendering: From Theory to
Implementation, 3rd edition, Morgan Kaufmann, 2016.

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR
Algorithms and Data Structures

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Computer Graphics Written
Examination

120
minutes

100 45% 1-6

Module Achievements: None

76

7.21 Image Processing

Module Name Image Processing
Module Code 2025-CA-S-CS-802
Module ECTS 5
Study Semester

Mandatory status for:
None

Mandatory Elective status for:
- 2025-CS-BSc 6

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Markus Wenzel

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Image Processing CA-CS-802 Lecture 5

Module Description

The module provides a foundation of the theory and applications of digital image processing. The first
part concentrates on morphological image processing, which is one of the most basic yet powerful tool
sets in dealing with digital images, and it is the backbone of many of today's high-performance image
analysis systems. The module starts by introducing concepts such as dilation, erosion, geodesic
transformations, morphological filtering, and the watershed transform. It then develops into advanced
strategies for image segmentation and texture analysis. The second part of the module will
concentrate on understanding problems from real-world applications, such as in biomedical imaging,
and provides an overview of the broader field of image processing. The course can be combined with
other courses on machine learning and signal analysis. Homework assignments will cover C/C++
implementations of basic and combined image processing algorithms.

Recommended Knowledge

Students are required to have a good understanding of data structures and algorithms, e.g. as provided
in “Algorithms and Data Structures” or “Core Algorithms and Data Structures”. Familiarity with Python
programming, and preferably with Python or other image processing libraries, is a great advantage.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain the theory and concepts of image processing.

77

2 Illustrate Illustrate concepts such as dilation, erosion, geodesic
transformations, and morphological filtering.

3 Analyze Analyze image segmentation and texture analysis algorithms.
4 Design Design and implement their own image processing algorithms in

C/C++.

Indicative Literature

• Milan Sonka Vaclav Hlavac Roger Boyle: Image Processing Analysis and Machine Vision 3rd
edition Nelson Engineering 2007

• Pierre Soille Morphological Image Analysis: Principles and Applications 2nd edition Springer
2004

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR
Algorithms and Data Structures

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Image Processing Written
Examination

120
minutes

100 45% 1-4

Module Achievements: None

I I I I

78

7.22 Distributed Algorithms

Module Name Distributed Algorithms
Module Code 2025-CA-S-CS-803
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6
- 2025-RIS-BSc 6
- 2025-SDT-BSc 6

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Dr. Kinga Lipskoch

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Distributed Algorithms CA-CS-803 Lecture 5

Module Description

Distributed algorithms are the foundation of modern distributed computing systems. They are
characterized by a lack of knowledge of a global state, a lack of knowledge of a global time, and
inherent non-determinism in their execution. The course introduces basic distributed algorithms using
an abstract formal model, which is centered on the notion of a transition system. The topics covered
are logical clocks, distributed snapshots, mutual exclusion algorithms, wave algorithms, election
algorithms, reliable broadcast algorithms, and distributed consensus algorithms. Process algebras are
introduced as another formalism to describe distributed and concurrent systems.

The distributed algorithms introduced in this module form the foundation of computing systems that
have to be scalable and fault-tolerant, e.g., large-scale distributed non-standard databases or
distributed file systems. The course is recommended for students interested in the design of scalable
distributed computing systems.

Recommended Knowledge

Students should refresh their knowledge of the C, C++ and Python programming language and be able
to solve simple programming problems in C, C++ and Python. Students are expected to have a working
programming environment.

Intended Learning Outcomes

79

No Competence ILO
1 Describe Describe and analyze distributed algorithms using formal methods

such as transition systems.
2 Explain Explain different algorithms to solve election problems.
3 Illustrate Illustrate the limitations of time to order events and how logical

clocks and vector clocks overcome these limitations.
4 Apply Apply distributed algorithms to produce consistent snapshots of

distributed computations.
5 Describe Describe the differences among wave algorithms for different

topologies.
6 Analyze Analyze and implement distributed consensus algorithms such as

Paxos and Raft.
7 Use Use a process algebra such as communicating sequential processes

or -calculus to model distributed algorithms.

Indicative Literature

• Maarten van Steen, Andrew S. Tanenbaum: Distributed Systems, 3rd edition, Pearson
Education, 2017.

• Nancy A. Lynch: Distributed Algorithms, Morgan Kaufmann, 1996.

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR
Algorithms and Data Structures

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Distributed Algorithms Written
Examination

120
minutes

100 45% 1-7

Module Achievements: None

I I I I

80

7.23 Web Application Development

Module Name Web Application Development
Module Code 2025-CA-S-CS-804
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6
- 2025-RIS-BSc 6

Duration 1 Semester
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Prof. Dr. Jürgen Schönwälder

Forms of Learning and Teaching
Class Attendance 17.5

Independent Study 40
Project Work 50

Exam Preparation 17.5
Workload Hours 125 hours

Module Components Number Type CP
Web Application Development CA-CS-804-A Lecture 2.5
Web Application Development -
Project

CA-CS-804-B Project 2.5

Module Description

A web application is a client-server computer program where the client provides the user interface and
the client-side logic runs in a web browser or as an app running on a mobile device such as a smart
phone or a tablet. A key characteristic is that more complex application logic and data storage is
realized by a server offering a web application programming interface.

This module focuses on the client side of web application and introduces technologies that can be used
to implement interactive user interfaces and client-side logic. It builds on the module databases and
web services, which covers the data storage components and server-side logic of web applications.

This module consists of a lecture and an associated project. The lecture component introduces
programming languages and frameworks that are widely used for implementing the client side of web
applications such as Java, Kotlin, Swift, JavaScript and frameworks built on top of them. In the project
component, students develop web applications and test them on existing and openly accessible web
services.

Intended Learning Outcomes

No Competence ILO

81

1 Explain Explain the document object model behind HTML and its relation to
CSS.

2 Discuss Discuss the principles and basic mechanisms of reactive website
design.

3 Analyze Analyze the interactions between web applications and web
services.

4 Use Use languages such as Java, Kotlin, or Swift to implement mobile
web applications.

5 Use Use web standards such as HTML, CSS, and JavaScript to implement
web applications running in standard web browsers.

Indicative Literature

• Stoyan Stefanov: JavaScript Patterns, O'Reilly Media, 2010.
• Alexey Soshin: Hands-on Design Patterns with Kotlin, Packt Publishing, 2018.
• Alex Banks, Eve Porcello: Learning React: Functional Web Development. With React and Flux,

O'Reilly, 2017.

Entry Requirements

Prerequisites Databases
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Web Application
Development

Written
Examination

120
minutes

50 45% 1-3

Web Application
Development - Project

Project
Assessment

 50 45% 4-5

Module Achievements: None

82

7.24 Computer Vision

Module Name Computer Vision
Module Code 2025-CO-546
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 3
- 2025-RIS-BSc 3

Duration 1 Semester
Program Affiliation 2025-RIS-BSc (Robotics and Intelligent

Systems)
Module Coordinator(s) Prof. Dr. Francesco Maurelli

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Computer Vision CO-546-A Lecture and

Laboratory
5

Module Description

Computer Vision algorithms are used in a variety of real-world applications that include surveillance
and object tracking, 3D model building (photogrammetry), and object recognition. Apart from their
visual appeal, these algorithms also represent elegant applications of linear algebra and optimization
techniques. Topics covered in this course include a recapitulation of relevant linear algebra,
introduction to face-recognition, camera calibration, stitched panoramas, edge and blob visual
features, structure from motion, color-spaces, segmentation, and an introduction to object-
recognition.

Recommended Knowledge

- Refresh basic programming skills in MATLAB and/or Python

- Basic knowledge of robotics middleware (RIS Lab I)

Usability and Relationship to other Modules

Giving the foundation of computer vision, this module is important for RIS project and for advanced
specialization courses. This module serves as a third year Specialization module for CS major students.

Intended Learning Outcomes

I I

83

No Competence ILO
1 Describe Describe image formation and camera models.
2 Calibrate Calibrate cameras.
3 Compute Compute image histograms, and basic image processing.
4 Discriminate Discriminate among visual features (e.g., corner, edge, blob).
5 Properly Properly use computer vision libraries.
6 Implement Implement computer vision applications.

Indicative Literature

• D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. 2nd edition, 2011.
• R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.
• Ma et al., An Invitation to 3 D Vision: From Images to Geometric Models, Springer, 2004.

Entry Requirements

Prerequisites Programming in C and C++
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Computer Vision Written
Examination

120
minutes

100 45% 1-6

Module Achievements: 50% if the assignments correctly solved.

84

7.25 Human Computer Interaction

Module Name Human Computer Interaction
Module Code 2025-CA-S-RIS-802
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-RIS-BSc 5
- 2025-CS-BSc 5

Duration 1 Semester
Program Affiliation 2025-RIS-BSc (Robotics and Intelligent

Systems)
Module Coordinator(s) Prof. Dr. Francesco Maurelli

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Human Computer Interaction CA-RIS-802 Lecture 5

Module Description

Computer systems often interact with human beings. The design of a good human-computer interface
is often crucial for the acceptance and the success of a software system. Human-computer interface
designs have to satisfy several requirements such as usability, learnability, efficiency, accessibility, and
safety. The module discusses the evolution of human-computer interaction models and introduces
design principles for graphical user interfaces and other types of interaction (e.g., visual, voice,
gesture). Human-computer interaction designs are often evaluated using prototypes or mockups that
can be given to test candidates to evaluate the effectiveness of the design. The module introduces
evaluation strategies as well as tools and techniques that can be used to prototype human-computer
interfaces.

Usability and Relationship to other Modules

Students with a strong interest in graphical user interfaces are encouraged to also select the Computer
Graphics specialization module, which introduces methods and technologies for creating computer
graphics and animations.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain the evolution of human-computer interaction models.

85

2 Design Design and implement simple graphical user interfaces.
3 Explain Explain ergonomic principles guiding the design of user interfaces.
4 Illustrate Illustrate different types of interaction (e.g., visual, voice, gestures)

and their usability aspects.
5 Evaluate Evaluate aspects of and tradeoffs between usability, learnability,

efficiency, and safety.
6 Apply Apply scientific methods to evaluate interfaces with respect to their

usability and other desirable properties.
7 Use Use prototyping tools that can be employed to create mockups of

user interfaces during the early stages of a software project.

Indicative Literature

• Alan Dix, Janet Finlay, Gregory D., and Russell Beale: Human-Computer Interaction, 3rd
edition, Pearson, 2004.

• Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, Nicholas
Diakopoulos: Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 6th edition, Pearson, 2016.

• Céline Jost, Brigitte Le Pévédic, Tony Belpaeme, Cindy Bethel, Dimitrios Chrysostomou, Nigel
Crook, Marine Grandgeorge, Nicole Mirnig, Human-Robot Interaction, Evaluation Methods
and Their Standardization, Springer 2020 ISBN: 978-3-030- 42306-3.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimum ILOs

Human Computer
Interaction

Project
Assessment

120
minutes

100 45% 1-7

Module Achievements: None

I I I I

86

7.26 Artificial Intelligence

Module Name Artificial Intelligence
Module Code 2025-CO-547
Module ECTS 5
Study Semester Mandatory status for:

- 2025-RIS-BSc 4
- 2025-Minor-RIS-BSc 4

Mandatory Elective status for:
- 2025-CS-BSc 4
- 2025-SDT-BSc 4

Duration 1 Semester
Program Affiliation 2025-RIS-BSc (Robotics and Intelligent

Systems)
Module Coordinator(s) Dr. Dmitry Kropotov

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Artificial Intelligence CO-547-A Lecture 5

Module Description

Artificial Intelligence (AI) is an important subdiscipline of Computer Science that deals with
technologies to automate the performance of tasks that are usually associated with intelligence. AI
methods have a significant application potential, as there is an increasing interest and need to generate
artificial systems that can carry out complex missions in unstructured environments without
permanent human supervision. The module teaches a selection of the most important methods in AI.
In addition to general-purpose techniques and algorithms, it also includes aspects of methods that are
especially targeted for physical systems such as intelligent mobile robots or autonomous cars.

Recommended Knowledge

Revise content of the pre-requisite modules.

Usability and Relationship to other Modules

This module gives an introduction to Artificial Intelligence (AI) excluding the aspects of machine
learning (ML), which are covered in a dedicated module that complements this one.

Intended Learning Outcomes

No Competence ILO

87

1 Outline Outline and explain the history, general developments, and
application areas of AI.

2 Apply Apply the basic concepts and methods of behavior-oriented AI.
3 Use Use concepts and methods of search algorithms for problem-

solving.
4 Explain Explain the basic concepts of path-planning as an application

example for domain-specific search.
5 Apply Apply basic path-planning algorithms and compare their relations to

general search algorithms.
6 Write Write and explain concepts of propositional and first-order logic.
7 Use Use logic representations and inference for basic examples of

artificial planning systems.

Indicative Literature

• S. Russell and P. Norvig Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
• S.M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
• J.-C. Latombe, Robot Motion Planning, Springer, 1991.

Entry Requirements

Prerequisites Core Algorithms and Data Structures OR
Algorithms and Data Structures

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Artificial Intelligence Written
Examination

120
minutes

100 45% 1-7

Module Achievements: None

I I I I

88

7.27 Robotics

Module Name Robotics
Module Code 2025-CO-540
Module ECTS 5
Study Semester Mandatory status for:

- 2025-RIS-BSc 3
-2025-Minor-RIS-BSc 3

Mandatory Elective status for:
- 2025-CS-BSc 3

Duration 1 Semester
Program Affiliation 2025-RIS-BSc (Robotics and Intelligent

Systems)
Module Coordinator(s) Prof. Dr. Andreas Birk

Forms of Learning and Teaching
Class Attendance 35

Exam Preparation 20
Independent Study 70

Workload Hours 125 hours

Module Components Number Type CP
Robotics CO-540-A Lecture 5

Module Description

Robotics is an area that is driven by dreams from science fiction and the reality of engineering. The
module intends to provide an understanding of the formal foundations of this area as well as its
technological state of the art and future directions. The course accordingly gives an introduction to the
core algorithmic, mathematical, and engineering concepts and methods of robotics. This includes
concepts and methods that are used for well-established tools of factory automation, especially in the
form of robot-arms, as well as increasingly relevant intelligent mobile systems such as autonomous
cars or autonomous transport systems.

Recommended Knowledge

Revise content of the pre-requisite modules.

Usability and Relationship to other Modules

- This module serves as a third Year Specialization module for CS major students.

- This module gives an introduction to Robotics, which is a core discipline of Robotics and Intelligent
System (RIS) and an important area of possible future employment.

Intended Learning Outcomes

No Competence ILO

89

1 Outline Outline and explain the history, general developments, and
application areas of robotics

2 Apply Apply the concepts and methods to describe space and motions
therein including homogeneous coordinates and transforms as well
as quaternions

3 Use Use the spatial concepts and methods for the forward kinematics
(FK) of robot-arms

4 Explain Explain basic concepts of simple actuators, including electrical
motors and gear systems

5 Apply Apply concepts and methods to derive the inverse kinematics of
robot-arms and related systems such as legs in analytical and
numerical forms

6 Apply Apply concepts and methods of wheeled locomotion including FK
and IK of the differential and of the omni-directional drive

7 Use Use basic concepts and methods of dynamics
8 Explain Explain and use core concepts and methods of global localization,

e.g., multilateration and multidimensional scaling
9 Use Use the basic concepts and methods of error propagation

estimation in the context of relative localization with dead-
reckoning

10 Outline Outline and compare the basic concepts and methods of mapping

Indicative Literature

• J. J. Craig, Introduction to robotics - Mechanics and control, Prentice Hall, 2005.
• G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, Cambridge University

Press, 2000.
• R.Siegwart and I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots, The MIT Press,

2004.
• S.Thrun, W. Burgard and D. Fox, Probabilistic Robotics, MIT Press, 2005.
• H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun,

Principles of Robot Motion, MIT Press, 2005.

Entry Requirements

Prerequisites Programming in C and C++
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Robotics Written
Examination

120
minutes

100 45% All

I I I I

90

Module Achievements: None

91

7.28 Digital Design

Module Name Digital Design
Module Code 2025-CA-S-ECE-803
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-RIS-BSc 5
- 2025-CS-BSc 5
- 2025-ECE-BSc 5

Duration 1 Semester
Program Affiliation 2025-ECE-BSc (Electrical and Computer

Engineering)
Module Coordinator(s) Dr. Fangning Hu

Forms of Learning and Teaching
Independent Study 90
Lecture/Laboratory 35

Workload Hours 125 hours

Module Components Number Type CP
Digital Design CA-ECE-803 Lecture and

Laboratory
5

Module Description

The current trend of digital system design is towards hardware description languages (HDLs) that allow
compact description of very complex hardware constructs. The module provides a sound introduction
to basic components of a digital system such as logic gates, multiplexers, decoders, flip-flops and
registers as well as VHDLs such as types, signals, sequential and concurrent statements. Methods and
principle of designing complex digital systems such as finite state machines, hierarchical design,
pipelined design, RTL design methodology and parameterized design will also be introduced. Students
will learn VHDL for programming FPGA boards to realize small digital systems in hardware (i.e. on FPGA
boards). Such digital systems could be adders, multiplexers, control units, multipliers, asynchronous
serial communication modules (UART). At the end of the module, the students should be able to design
a simple digital system by VHDL on an FPGA board.

Recommended Knowledge

Students may prepare themselves with books like “Brent E. Nelson, Designing Digital Systems, 2005”
and “Pong P. Chu, RTL Hardware Design Using VHDL, A John Wiley & Sons, Inc, Publication, 2006”.

Usability and Relationship to other Modules

I I

92

This module introduces how to design digital systems and how to realize them on a FPGA board which
could also serve as a specialization module for students from Computer Science and Robotics and
Intelligent Systems.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand the principle of digital system design based on standard

building blocks and components.
2 Design Design a complex digital system.
3 Understand Understand the limitations of a given hardware platform (here

FPGAs), modify algorithms where necessary, and structure them
suitably in order to optimize performance and complexity.

4 Use Use a typical development system.
5 Program Program in VHDL.
6 Program Program an FPGA board.

Indicative Literature

• Brent E. Nelson, Designing Digital Systems with SystemVerilog, 2018, ISBN-13: 978-
1980926290.

• Pong P. Chu, RTL Hardware Design Using VHDL, Wiley-IEEE Press, 2006, ISBN-13: 978-
0471720928.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Digital Design Written
Examination

120
minutes

100 45% 1-6

Module Achievements: None

I I I I

93

7.29 Information Theory

Module Name Information Theory
Module Code 2025-CO-525
Module ECTS 5
Study Semester Mandatory status for:

- 2025-ECE-BSc 4

Mandatory Elective status for:
- 2025-CS-BSc 4
- 2025-PHDS-BSc 4
- 2025-RIS-BSc 4

Duration 1 Semester
Program Affiliation 2025-ECE-BSc (Electrical and Computer

Engineering)
Module Coordinator(s) Prof. Dr.-Ing. Mojtaba Joodaki

Forms of Learning and Teaching
Independent Study 90

Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Information Theory CO-525-A Lecture 5

Module Description

Information theory serves as the most important foundation for communication systems. The module
provides an analytical framework for modeling and evaluating point-to-point and multi-point
communication. After a short rehearsal of probability and random variables and some excursion to
random number generation, the key concept of information content of a signal source and information
capacity of a transmission medium are precisely defined, and their relationships to data compression
algorithms and error control codes are examined in detail. The module aims to install an appreciation
for the fundamental capabilities and limitations of information transmission schemes and to provide
the mathematical tools for applying these ideas to a broad class of communications systems.

The module contains also a coverage of different source-coding algorithms like Huffman, Lempel-Ziv-
(Welch), Shannon-Fano-Elias, Arithmetic Coding, Runlength Encoding, Move-to-Front transform, PPM,
and Context Tree Weighting. In Channel coding, finite fields, some basic block and convolutional codes,
and the concept of iterative decoding will be introduced. Aside from source and channel aspects, an
introduction to security is given, including public-key cryptography. Information theory is a standard
module in every communications-oriented Bachelor's program.

Recommended Knowledge

- Signals and Systems contents, such as DFT and convolution

94

- Notion of probability, combinatorics basics as taught in Methods module “Probability and Random
Processes"

- Some basic knowledge of communications and sound understanding of probability is recommended.
Hence, it is strongly advised to take the methods and skills course Probability and Random Processes
prior to this module. Nevertheless, probability basics will also be revised within the module.

Usability and Relationship to other Modules

- Although not a mandatory prerequisite, this module is ideally taken before Coding Theory (CA-ECE-
802)

- All communications-related modules are naturally based on information theory

- Students from Computer Science or related programs, also students taking Bio-informatics modules,
profit from information-theoretic knowledge and source coding (compression) algorithms. Students
from Computer Science would also be interested in the algebraic basics for error-correcting codes and
cryptology, fields which area also introduced shortly.

- Serves as a mandatory elective 3rd year Specialization module for CS and RIS major students.

Intended Learning Outcomes

No Competence ILO
1 Explain Explain what is understood as the information content of data and

the corresponding limits of data compression algorithms.
2 Design Design and apply fundamental algorithms in data compression.
3 Explain Explain the information theoretic limits of data transmission.
4 Apply Apply the mathematical basics of channel coding and cryptography.
5 Implement Implement some channel coding schemes.
6 Differentiate Differentiate the principles of encryption and authentication

schemes and implement discussed procedures.

Indicative Literature

• Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, 2nd ed., Wiley, Sept. 2006.
• David Salomon, Data Compression, The Complete Reference, 4th ed., Springer, 2007.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Information Theory Written
Examination

120
minutes

100 45% 1-6

I I I I

95

Module Achievements: None

96

7.30 Internship / Startup and Career Skills

Module Name Internship / Startup and Career Skills
Module Code 2025-CA-INT-900
Module ECTS 15
Study Semester Mandatory status for:

- 2025-CS-BSc 5
- 2025-CS-BSc 6

Mandatory Elec�ve status for:
None

Dura�on 1 Semester
Program Affilia�on Career ()
Module Coordinator(s) Dr. Tanja Woebs

Clémen�ne Senicourt

Forms of Learning and Teaching
Internship 308

Internship Event 2
Independent Study 32

Interac�ve Learning 33
Workload Hours 375 hours

Module Components Number Type CP
Internship CA-INT-900-0 Internship 15

Module Description

The aims of the internship module are reflec�on, applica�on, orienta�on, and development: for
students to reflect on their interests, knowledge, skills, their role in society, the relevance of their major
subject to society, to apply these skills and this knowledge in real life whilst ge�ng prac�cal experience,
to find a professional orienta�on, and to develop their personality and in their career. This module
supports the programs’ aims of preparing students for gainful, qualified employment and the
development of their personality.

The full-�me internship must be related to the students’ major area of study and extends lasts a
minimum of two consecu�ve months, normally scheduled just before the 5th semester, with the
internship event and submission of the internship report in the 5th semester. Upon approval by the
SPC and SCS, the internship may take place at other �mes, such as before teaching starts in the 3rd
semester or a�er teaching finishes in the 6th semester. The Study Program Coordinator or their faculty
delegate approves the intended internship a priori by reviewing the tasks in either the Internship
Contract or Internship Confirma�on from the respec�ve internship ins�tu�on or company. Further
regula�ons as set out in the Policies for Bachelor Studies apply.

Students will be gradually prepared for the internship in semesters 1 to 4 through a series of mandatory
informa�on sessions, seminars, and career events.

97

The purpose of the Career Services Informa�on Sessions is to provide all students with basic facts about
the job market in general, and especially in Germany and the EU, and services provided by the Student
Career Support.

In the Career Skills Seminars, students will learn how to engage in the internship/job search, how to
create a compe��ve applica�on (CV, Cover Leter, etc.), and how to successfully conduct themselves
at job interviews and/or assessment centers. In addi�on to these mandatory sec�ons, students can
customize their skill set regarding applica�on challenges and their intended career path in elec�ve
seminars.

Finally, during the Career Events organized by the Career Service Center (e.g. the annual Constructor
Career Fair and single employer events on and off campus), students will have the opportunity to apply
their acquired job market skills in an actual internship/job search situa�on and to gain their desired
internship in a high-quality environment and with excellent employers.

As an alterna�ve to the full-�me internship, students can apply for the StartUp Op�on. Following the
same schedule as the full-�me internship, the StartUp Op�on allows students who are par�cularly
interested in founding their own company to focus on the development of their business plan over a
period of two consecu�ve months. Par�cipa�on in the StartUp Op�on depends on a successful
presenta�on of the student’s ini�al StartUp idea. This presenta�on will be held at the beginning of the
4th semester. A jury of faculty members will judge the student’s poten�al to realize their idea and
approve the par�cipa�on of the students. The StartUp Op�on is supervised by the Faculty StartUp
Coordinator. At the end of StartUp Op�on, students submit their business plan. Further regula�ons as
outlined in the Policies for Bachelor Studies apply.

The concluding Internship Event will be conducted within each study program (or a cluster of related
study programs) and will formally conclude the module by providing students the opportunity to
present on their internships and reflect on the lessons learned within their major area of study. The
purpose of this event is not only to self-reflect on the whole internship process, but also to create a
professional network within the academic community, especially by entering the Alumni Network a�er
gradua�on. It is recommended that all three classes (years) of the same major are present at this event
to enable networking between older and younger students and to create an educa�onal environment
for younger students to observe the “lessons learned” from the diverse internships of their elder fellow
students.

Recommended Knowledge

- Informa�on provided on CSC

- Major specific knowledge and skills

- Please see the sec�on “Knowledge Center” at JobTeaser Career Center for informa�on on Career
Skills seminar and workshop offers and for online tutorials on the job market prepara�on and the
applica�on process. For more informa�on, please see htps://constructor.university/student-
life/career-services

- Par�cipa�ng in the internship events of earlier classes

Usability and Relationship to other Modules

98

This module applies skills and knowledge acquired in previous modules to a professional environment
and provides an opportunity to reflect on their relevance in employment and society. It may lead to
thesis topics.

Intended Learning Outcomes

No Competence ILO
1 Describe Describe the scope and the func�ons of the employment market

and personal career development.
2 Apply Apply professional, personal, and career-related skills for the

modern labor market, including self-organiza�on, ini�a�ve and
responsibility, communica�on, intercultural sensi�vity, team and
leadership skills, etc.

3 Independently Independently manage their own career orienta�on processes by
iden�fying personal interests, selec�ng appropriate internship
loca�ons or start-up opportuni�es, conduc�ng interviews,
succeeding at pitches or assessment centers, nego�a�ng related
employment, managing their funding or support condi�ons (such
as salary, contract, funding, supplies, work space, etc.).

4 Apply Apply specialist skills and knowledge acquired during their studies
to solve problems in a professional environment and reflect on
their relevance in employment and society.

5 Jus�fy Jus�fy professional decisions based on theore�cal knowledge and
academic methods.

6 Reflect Reflect on their professional conduct in the context of the
expecta�ons of and consequences for employers and their society.

7 Reflect Reflect on and set their own targets for the further development of
their knowledge, skills, interests, and values.

8 Establish Establish and expand their contacts with poten�al employers or
business partners, and possibly other students and alumni, to build
their own professional network to create employment
opportuni�es in the future.

9 Discuss Discuss observa�ons and reflec�ons in a professional network.

Entry Requirements

Prerequisites Internship / Startup and Career Skills
Co-requisites None
Addi�onal Remarks At least 15 CP from CORE modules in the

major

Assessment and Completion
Components Examina�on

Type
Dura�on
/Length

Weight
(%)

Minimu
m

ILOs

Internship Project Report 3500
words

100 45% 1-9

I I I I

99

Module Achievements: None

100

7.31 Bachelor Thesis and Seminar CS

Module Name Bachelor Thesis and Seminar CS
Module Code 2025-CA-CS-800
Module ECTS 15
Study Semester Mandatory status for:

- 2025-CS-BSc 6

Mandatory Elective status for:
None

Duration 14-week lecture period
Program Affiliation 2025-CS-BSc (Computer Science)
Module Coordinator(s) Study Program Chair

Forms of Learning and Teaching
Independent Study 350

Seminar 25
Workload Hours 375 hours

Module Components Number Type CP
Thesis CS CA-CS-800-T Thesis 12
Thesis Seminar CS CA-CS-800-S Seminar 3

Module Description

This module is a mandatory graduation requirement for all undergraduate students to demonstrate
their ability to address a problem from their respective major subject independently using
academic/scientific methods within a set time frame. Although supervised, this module requires
students to be able to work independently and systematically and set their own goals in exchange for
the opportunity to explore a topic that excites and interests them personally and that a faculty member
is interested in supervising. Within this module, students apply their acquired knowledge about their
major discipline and their learned skills and methods for conducting research, ranging from the
identification of suitable (short-term) research projects, preparatory literature searches, the
realization of discipline-specific research, and the documentation, discussion, interpretation, and
communication of research results.

This module consists of two components, an independent thesis and an accompanying seminar. The
thesis component must be supervised by a Constructor University faculty member and requires short-
term research work, the results of which must be documented in a comprehensive written thesis
including an introduction, a justification of the methods, results, a discussion of the results, and a
conclusion. The seminar provides students with the opportunity to practice their ability to present,
discuss, and justify their and other students’ approaches, methods, and results at various stages of
their research in order to improve their academic writing, receive and reflect on formative feedback,
and therefore grow personally and professionally.

Recommended Knowledge

I I

101

- Identify an area or a topic of interest and discuss this with your prospective supervisor in a timely
manner.

- Create a research proposal including a research plan to ensure timely submission.

- Ensure you possess all required technical research skills or are able to acquire them on time.

- Review the University's Code of Academic Integrity and Guidelines to Ensure Good Academic Practice

Usability and Relationship to other Modules

This module builds on all previous modules in the undergraduate program. Students apply the
knowledge, skills, and competencies they have acquired and practiced during their studies, including
research methods and their ability to acquire additional skills independently as and if required.

Intended Learning Outcomes

No Competence ILO
1 Apply Apply their knowledge and understanding to a context of their

choice.
2 Independently Independently plan and organize advanced learning processes.
3 Design Design and implement appropriate research methods, taking full

account of the range of alternative techniques and approaches.
4 Collect Collect, assess, and interpret relevant information.
5 Draw Draw scientifically-founded conclusions that consider social,

scientific, and ethical factors.
6 Develop Develop, formulate, and advance solutions to problems and debates

within their subject area, and defend these through argument.
7 Discuss Discuss information, ideas, problems, and solutions with specialists

and non-specialists.

Indicative Literature

• Justin Zobel, Writing for Computer Science, 3rd edition, Springer, 2015.

Entry Requirements

Prerequisites Bachelor Thesis and Seminar CS
Co-requisites None
Additional Remarks Students must have taken and successfully

passed a total of at least 30 CP from
advanced modules, and of those, at least 20
CP from advanced modules in the major.

Assessment and Completion

Components Examination
Type

Duration/
Length

Weight
(%)

Minimu
m

ILOs

102

Thesis CS Thesis 6,000-
8,000
Words
(15-25
Pages)
excluding
front and
back
matter.

80 45% All,
mainly 1-
6.

Thesis Seminar CS Presentation 15- 30
minutes

20 45% All,
Mainly 6-
7

Module Achievements: None

103

8 Constructor Track Modules

8.1 Methods Modules

 Elements of Linear Algebra

Module Name Elements of Linear Algebra
Module Code 2025-CTMS-MAT-24
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-RIS-BSc 1
- 2025-CS-BSc 1
- 2025-SDT-BSc 1
- 2025-F-ACS-BSc 1

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Lecture 35

Independent Study 90
Workload Hours 125 hours

Module Components Number Type CP
Elements of Linear Algebra CTMS-24 Lecture 5

Module Description

This module is the first in a sequence introducing mathematical methods at the university level in a
form relevant for study and research in the quantitative natural sciences, engineering, Computer
Science. The emphasis in these modules is on training

operational skills and recognizing mathematical structures in a problem context. Mathematical rigor is
used where appropriate. However, a full axiomatic treatment of the subject is provided in the first-
year modules “Analysis” and “Linear Algebra”.

The lecture comprises the following topics:

- Review of elementary analytic geometry

- Vector spaces, linear independence, bases, coordinates

- Matrices and matrix algebra

8.1.1

104

- Solving linear systems by Gauss elimination, structure of general solution

- LU decomposition and matrix inverse

- Linear maps and connection to matrices

- Determinant

- Eigenvalues and eigenvectors

- Hermitian and skew-Hermitian matrices

- Orthonormal bases, Gram-Schmidt orthonormalization and QR decomposition

- Fourier transform

- Singular value decomposition

- Principal Component Analysis and best low rank approximations

Recommended Knowledge

- Knowledge of Pre-Calculus at High School level (Functions, inverse functions, sets, real numbers,
trigonometric functions, parametric equations, tangent lines, graphs, elementary methods for solving
systems of linear and nonlinear equations)

- Knowledge of Analytic Geometry at High School level (vectors, lines, planes, reflection, rotation,
translation, dot product, cross product, normal vector, polar coordinates)

- Review all of higher-level High School Mathematics, in particular the topics explicitly named in “Entry
Requirements – Knowledge, Ability, or Skills” above.

Usability and Relationship to other Modules

A rigorous treatment of this topic is provided in the module “Linear Algebra.”

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the methods described in the content section of this module

description to the extent that they can solve standard textbook
problems reliably and with confidence.

2 Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement.

3 Recognize Recognize common mathematical terminology and concepts used in
textbooks and research papers in computer science, engineering,
and mathematics to the extent that they fall into the content
categories covered in this module.

4 Independently Independently prove results which are direct consequences of those
proved in the lectures

5 Understand Understand and use fundamental mathematical terminology to
communicate mathematical ideas.

Indicative Literature

105

• Gilbert Strang, Introduction to Linear Algebra, Fifth Edition (2016).
• S.A. Leduc Linear Algebra. Hoboken: Wiley (2003).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Elements of Linear Algebra Written
Examination

120
minutes

100 45% 1-5

Module Achievements: None

I I I I

106

 Elements of Calculus

Module Name Elements of Calculus
Module Code 2025-CTMS-MAT-25
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-RIS-BSc 2
- 2025-CS-BSc 2
- 2025-SDT-BSc 2
- 2025-F-ACS-BSc 2

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Lecture 35

Independent Study 90
Workload Hours 125 hours

Module Components Number Type CP
Elements of Calculus CTMS-25 Lecture 5

Module Description

This module is the second in a sequence introducing mathematical methods at the university level in
a form relevant for study and research in the quantitative natural sciences, engineering, Computer
Science. The emphasis in these modules is on training operational skills and recognizing mathematical
structures in a problem context. Mathematical rigor is used where appropriate. However, a full
axiomatic treatment of the subject is provided in the first-year modules “Analysis”.

The lecture comprises the following topics:

- Sets, basic operations, and relations

- Functions, basic operations, compositions of functions, graphs of functions

- Brief introduction to real and complex numbers

- Limits for sequences and functions

- Continuity

- Derivatives of functions and its geometric interpretations

- Computing derivatives: linearity, product rule, chain rule

- Applications of derivatives, optimization for one-variable functions

8.1.2

107

- Introduction to Integration and the Fundamental Theorem of Calculus

- Differential equations, modeling simple dynamical systems

- Discrete derivative, summations, difference equations

- Functions of several variables, representations using graphs and level curves

- Basic ideas of multivariable calculus

- Partial derivatives and directional derivatives, total derivative

- Optimization in several variables, gradient descent, Lagrange multipliers

- Ordinary differential equations with several variables, simple examples

- Linear constant-coefficient ordinary differential equations

- Fourier series and their applications

Recommended Knowledge

- Knowledge of Pre-Calculus at High School level (Functions, inverse functions, sets, real numbers,
polynomials, rational functions, trigonometric functions, logarithm and exponential function,
parametric equations, tangent lines, graphs.)

- Knowledge of Analytic Geometry at High School level (vectors, lines, planes, reflection, rotation,
translation, dot product, cross product, normal vector, polar coordinates)

- Some familiarity with elementary Calculus (limits, derivative) is helpful, but not strictly required.

- Review the content of Linear Algebra

Usability and Relationship to other Modules

A rigorous treatment of this topic is provided in the module “Analysis”

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the methods described in the content section of this module

description to the extent that they can solve standard textbook
problems reliably and with confidence.

2 Recognize Recognize the mathematical structures in an unfamiliar context and
translate them into a mathematical problem statement.

3 Recognize Recognize common mathematical terminology and concepts used in
textbooks and research papers in computer science, engineering,
and mathematics to the extent that they fall into the content
categories covered in this module.

4 Independently Independently prove results which are direct consequences of those
proved in the lectures.

5 Understand Understand and use fundamental mathematical terminology to
communicate mathematical ideas.

108

Indicative Literature

• James Stewart, Calculus: Early Transcendentals, (2015).
• S.I. Grossman, Calculus of one variable, 2nd edition, (2014).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Elements of Calculus Written
Examination

120
minutes

100 45% 1-5

Module Achievements: None

109

 Probability and Random Processes

Module Name Probability and Random Processes
Module Code 2025-CTMS-MAT-12
Module ECTS 5
Study Semester Mandatory status for:

- 2025-CS-BSc 3

Mandatory Elective status for:
None

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Independent Study 90

Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Probability and random processes CTMS-12 Lecture 5

Module Description

This module aims to provide a basic knowledge of probability theory and random processes suitable
for students in engineering, Computer Science, and Mathematics. The module provides students with
basic skills needed for formulating real-world problems dealing with randomness and probability in
mathematical language, and methods for applying a toolkit to solve these problems. Mathematical
rigor is used where appropriate. A more advanced treatment of the subject is deferred to the third-
year module Stochastic Processes.

The lecture comprises the following topics:

- Brief review of number systems, elementary functions, and their graphs

- Outcomes, events and sample space

- Combinatorial probability

- Conditional probability and Bayes’ formula

- Binomials and Poisson-Approximation

- Random Variables, distribution and density functions

- Independence of random variables

- Conditional Distributions and Densities

- Transformation of random variables

8.1.3

110

- Joint distribution of random variables and their transformations

- Expected Values and Moments, Covariance

- High dimensional probability: Chebyshev and Chernoff bounds

- Moment-Generating Functions and Characteristic Functions

- The Central limit theorem

- Random Vectors and Moments, Covariance matrix, Decorrelation

- Multivariate normal distribution. Markov chains, stationary distributions.

Recommended Knowledge

- Review all of the first-year calculus and linear algebra modules as indicated in "Entry Requirements -
Knowledge, Ability, or Skills" above.

- Knowledge of calculus at the level of a first year calculus module (differentiation, integration with
one and several variables, trigonometric functions, logarithms and exponential functions).

- Knowledge of linear algebra at the level of a first year university module (eigenvalues and
eigenvectors, diagonalization of matrices).

- Some familiarity with elementary probability theory at the high school level.

Usability and Relationship to other Modules

Students taking this module are expected to be familiar with basic tools from calculus and linear
algebra.

Intended Learning Outcomes

No Competence ILO
1 Command Command the methods described in the content section of this

module description to the extent that they can solve standard text-
book problems reliably and with confidence.

2 Recognize Recognize the probabilistic structures in an unfamiliar context and
translate them into a mathematical problem statement.

3 Recognize Recognize common mathematical terminology used in textbooks
and research papers in the quantitative sciences, engineering, and
mathematics to the extent that they fall into the content categories
covered in this module.

Indicative Literature

• J. Hwang and J.K. Blitzstein (2019). Introduction to Probability, second edition. London:
Chapman & Hall.

• S. Ghahramani. Fundamentals of Probability with Stochastic Processes, fourth edition. Upper
Saddle River: Prentice Hall.

Entry Requirements

111

Prerequisites Elements of Linear Algebra
Elements of Calculus
Matrix Algebra and Advanced Calculus I
Matrix Algebra and Advanced Calculus II

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Probability and random
processes

Written
Examination

120
minutes

100 45% 1-3

Module Achievements: None

I I I I

112

 Statistics and Data Analytics

Module Name Statistics and Data Analytics
Module Code 2025-CTMS-MET-21
Module ECTS 5
Study Semester Mandatory status for:

- 2025-MMDA-BSc 4
- 2025-PHDS-BSc 4
- 2025-SDT-BSc 4

Mandatory Elective status for:
- 2025-CS-BSc 4

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Dr. Ivan Ovsyannikov

Forms of Learning and Teaching
Independent Study 105

Lecture 35
Workload Hours 140 hours

Module Components Number Type CP
Statistics and Data Analytics CTMS-21 Lecture 5

Module Description

The aim of this module is to introduce students to basic ideas and methods used for analysing large
and complex datasets. While the first modern statistical toolkits date back to the beginning of the
twentieth century, the advent of the computer age and the availability of fast computations has led to
dramatic changes in the field.

Statistical models have found applications in many areas ranging from business and healthcare to
astrophysics and speech recognition. Such models are used to make predictions, draw inferences and
support policy decisions in all these areas.

This module draws on students' knowledge from the module Probability and Random Processes to
help them build and analyze statistical models, ranging in their degree of sophistication from basis to
more advanced ones, and apply them to real-world situations.

The module will cover the following topics:

- Classical statistics: descriptive and inferential modes, parameter estimation and hypothesis testing.

- Linear regressions, multiple linear regressions

- Classification: logistic regression, generative models for classification

- Resampling methods, bootstrap

8.1.4

113

- Non-linear models, splines

- Support vector machines

- Basic ideas of deep learning

Recommended Knowledge

- Good command of basic probability

- Recap Probability and Random Processes

Usability and Relationship to other Modules

- This module is part of the core education in Mathematics, Modeling and Data Analytics and Physics
and Data Science.

- It is also valuable for students in Computer Science, RIS, and ECE, either as part of a minor in
Mathematics, or as an elective module.

Intended Learning Outcomes

No Competence ILO
1 Formulate Formulate statistical models for real world problems.
2 Describe Describe statistical methods for analyzing real world problems.
3 Explain Explain the importance of linear and non-linear models.
4 Recognize Recognize different solution methods for modeling problems.
5 Illustrate Illustrate the use of regressions, resampling, support vector

machines and other statistical tools to describe phenomena in the
real world.

6 Describe Describe basic ideas of deep learning.

Indicative Literature

• James, Witten, Hastie, Tibshirani. An introduction to Statistical learning, second edition.

Entry Requirements

Prerequisites Probability and Random Processes
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Statistics and Data
Analytics

Written
Examination

120
minutes

100 45% 1-6

Module Achievements: None

I I I I

114

 Numerical Methods

Module Name Numerical Methods
Module Code 2025-CTMS-MAT-13
Module ECTS 5
Study Semester Mandatory status for:

- 2025-ECE-BSc 4

Mandatory Elective status for:
- 2025-CS-BSc 4
- 2025-RIS-BSc 4

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Independent Study 90

Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Numerical Methods CTMS-13 Lecture 5

Module Description

This module covers calculus-based numerical methods, in particular root finding, interpolation,
approximation, numerical differentiation, numerical integration (quadrature), and a first introduction
to the numerical solution of differential equations.

The lecture comprises the following topics:

- number representations

- Gaussian elimination

- LU decomposition

- Cholesky decomposition

- iterative methods

- bisection method

- Newton’s method

- secant method

- polynomial interpolation

- Aitken’s algorithm

8.1.5

115

- Lagrange interpolation

- Newton interpolation

- Hermite interpolation

- Bezier curves

- De Casteljau’s algorithm

- piecewise interpolation

- Spline interpolation

- B-Splines

- Least-squares approximation

- polynomial regression

- difference schemes

- Richardson extrapolation

- Quadrature rules

- Monte Carlo integration

- time stepping schemes for ordinary differential equations

- Runge Kutta schemes

- finite difference method for partial differential equations

Recommended Knowledge

- Taking Calculus and Elements of Linear Algebra II before taking this module is recommended, but not
required. A thorough review of Calculus and Elements of Linear Algebra, with emphasis on the topics
listed below is recommended.

- Knowledge of Calculus (functions, inverse functions, sets, real numbers, sequences and limits,
polynomials, rational functions, trigonometric functions, logarithm and exponential function,
parametric equations, tangent lines, graphs, derivatives, anti-derivatives, elementary techniques for
solving equations).

- Knowledge of Linear Algebra (vectors, matrices, lines, planes, n-dimensional Euclidean vector space,
rotation, translation, dot product (scalar product), cross product, normal vector, eigenvalues,
eigenvectors, elementary techniques for solving systems of linear equations).

Usability and Relationship to other Modules

This module is a co-recommendation for the module "Applied Dynamical Systems Lab", in which the
actual implementation in a high-level programming language of the learned methods will be covered.

Intended Learning Outcomes

No Competence ILO

116

1 Describe Describe the basic principles of discretization used in the numerical
treatment of continuous problems.

2 Command Command the methods described in the content section of this
module description to the extent that they can solve standard text-
book problems reliably and with.

3 Recognize Recognize mathematical terminology used in textbooks and
research papers on numerical methods in the quantitative sciences,
engineering, and mathematics to the extent that they fall into the
content categories covered in this module.

4 Implement Implement simple numerical algorithms in a high-level programming
language.

5 Understand Understand the documentation of standard numerical library code
and understand the potential limitations and caveats of such
algorithms.

Indicative Literature

• D. Kincaid and W. Cheney (1991). Numerical Analysis: Mathematics of Scientific Computing.
Pacific Grove: Brooks/Cole Publishing.

• W Boehm and H Prautzsch (1993). Numerical Methods. Natick: AK Peters.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Numerical Methods Written
Examination

120
minutes

100 45% 1-5

Module Achievements: None

I I I I

117

 Matrix Algebra and Advanced Calculus I

Module Name Matrix Algebra and Advanced Calculus I
Module Code 2025-CTMS-MAT-22
Module ECTS 5
Study Semester Mandatory status for:

- 2025-PHDS-BSc 1
- 2025-ECE-BSc 1
- 2025-PHDS-BSc 2

Mandatory Elective status for:
- 2025-RIS-BSc 1
- 2025-CS-BSc 1
- 2025-SDT-BSc 1

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Independent Study 90

Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Matrix Algebra and Advanced Calculus
I

CTMS-22 Lecture 5

Module Description

This module is the first in a sequence including advanced mathematical methods at the university level
at a level higher than the course Calculus and Linear Algebra I.

The course comprises the following topics:

- Number systems, complex numbers

- The concept of function, composition of functions, inverse functions

- Basic ideas of calculus: Archimedes to Newton

- The notion of limit for functions and sequences and series

- Continuous function and their basic properties

- Derivatives: rate of change, velocity and applications

- Mean value theorem and estimation, maxima and minima, convex functions

- Integration, change of variables, Fundamental Theorem of Calculus

8.1.6

I I

118

- Applications of the integral: work, area, average value, centre of mass

- Improper Integrals, Mean value theorem for integrals

- Taylor series

- Ordinary differential equations, examples, solving first order linear differential equations

- Basic ideas of numerical analysis, Newton's method, asymptotic formulas

- Review of elementary analytic geometry, lines, conics

- Vector spaces, linear independence, bases, coordinates

- Linear maps, matrices and their algebra, matrix inverses

- Gaussian elimination, solution space

- Determinants

Recommended Knowledge

- Knowledge of pre-calculus ideas (sets and functions, elementary functions, polynomials) and analytic
geometry (equations of lines, systems of linear equations, dot product, polar coordinates) at High
School level. Familiarity with ideas of calculus is helpful.

- Review of high school mathematics.

Usability and Relationship to other Modules

- Calculus and Linear Algebra I can be substituted with this module after consulting academic advisor

- A more advanced treatment of multi-variable Calculus, in particular, its applications in Physics and
Mathematics, is provided in the second-semester module "Applied Mathematics". All students taking
"Applied Mathematics" are expected to take this module as well as the module topics are closely
synchronized.

- The second-semester module "Linear Algebra" provides a complete proof-driven development of the
theory of Linear Algebra. Diagonalization is covered more abstractly, with particular emphasis on
degenerate cases. The Jordan normal form is also covered in "Linear Algebra", not in this module.

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the methods described in the content section of this module

description to the extent that they can
2 Solve Solve standard text-book problems reliably and with confidence
3 Recognize Recognize the mathematical structures in an unfamiliar context and

translate them into a mathematical problem statement
4 Recognize Recognize common mathematical terminology used in textbooks

and research papers in the quantitative sciences, engineering, and
mathematics to the extent that they fall into the content categories
covered in this module

Indicative Literature

119

• Advanced Calculus, G.B. Folland (Pearson 2002).
• Linear Algebra, S. Lang (Springer Verlag 1986).
• Mathematical Methods for Physics and Engineering
• K. Riley, M. Hobson, S. Bence (Cambridge University Press 2006).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Matrix Algebra and
Advanced Calculus I

Written
Examination

120
minutes

100 45% 1-4

Module Achievements: None

I I I I

120

 Matrix Algebra and Advanced Calculus II

Module Name Matrix Algebra and Advanced Calculus II
Module Code 2025-CTMS-MAT-23
Module ECTS 5
Study Semester Mandatory status for:

- 2025-ECE-BSc 2
- 2025-PHDS-BSc 2

Mandatory Elective status for:
- 2025-RIS-BSc 2
- 2025-CS-BSc 2
- 2025-SDT-BSc 2

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Independent Study 90

Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Matrix Algebra and Advanced Calculus
II

CTMS-23 Lecture 5

Module Description

- Coordinate systems, functions of several variables, level curves, polar coordinates

- Continuity, directional derivatives, partial derivatives, chain rule (version I)

- derivative as a matrix, chain rule (version II), tangent planes and linear approximation, gradient,
repeated partial derivatives

- Minima and Maxima of functions of several variables, Lagrange multipliers

- Multiple integrals, iterated integrals, integration over standard regions, change of variables formula

- Vector fields, parametric representation of curves, line integrals and arc length, conservative vector
fields

- Potentials, Green's theorem in the plane

- Parametric representation of surfaces

- Vector products and normal surface integrals

- Integral theorems by Stokes and Gauss, physical interpretations

8.1.7

I I

121

- Basics of differential forms and their calculus, connection to gradient, curl, and divergence

- Eigenvalues and eigenvectors, diagonalisable matrices

- Inner product spaces, Hermitian and unitary matrices

- Matrix factorizations: Singular value decomposition with applications, LU decomposition, QR
decomposition

- Linear constant-coefficient ordinary differential equations, application to mechanical vibrations and
electrical

oscillations

- Periodic functions, Fourier series

Recommended Knowledge

Review the content of Matrix Algebra and Advanced Calculus I

Usability and Relationship to other Modules

- This module can substitute Calculus and Linear Algebra II after consulting academic advisor.

- Methods of this course are applied in the module Mathematical Modeling.

- The second-semester module Linear Algebra provides a more rigorous and more abstract treatment
of some of the notions discussed in this module.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand the definitions of continuity, derivative of a function as

a linear transformation, multivariable integrals, eigenvalues and
eigenvectors and associated notions.

2 Apply Apply the methods described in the content section of this module
description to the extent that they can.

3 Evaluate Evaluate multivariable integrals using definitions or by applying
Green and Stokes theorem.

4 Evaluate Evaluate various decompositions of matrices.
5 Solve Solve standard text-book problems reliably and with confidence.
6 Recognize Recognize the mathematical structures in an unfamiliar context and

translate them into a mathematical problem statement.
7 Recognize Recognize common mathematical terminology used in textbooks

and research papers in the quantitative sciences, engineering, and
mathematics to the extent that they fall into the content categories
covered in this module.

Indicative Literature

• Advanced Calculus GB Folland (Pearson 2002).
• Linear Algebra S Lang (Springer Verlag 1986).
• Mathematical Methods for Physics and Engineering.

122

• K Riley M Hobson S Bence (Cambridge University Press 2006).
• Vector Calculus Linear Algebra and Differential Forms: A Unified.
• Approach JH Hubbard B Hubbard (Pearson 1998).

Entry Requirements

Prerequisites Matrix Algebra and Advanced Calculus I
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Matrix Algebra and
Advanced Calculus II

Written
Examination

120
minutes

100 45% 1-7

Module Achievements: None

I I I I

123

8.2 New Skills

 Logic (perspective I)

Module Name Logic (perspective I)
Module Code 2025-CTNS-NSK-01
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 3

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Logic (perspective I) CTNS-01 Lecture (Online) 2.5

Module Description

Suppose a friend asks you to help solve a complicated problem? Where do you begin? Arguably, the
first and most difficult task you face is to figure out what the heart of the problem actually is. In doing
that you will look for structural similarities between the problem posed and other problems that arise
in different fields that others may have addressed successfully. Those similarities may point you to a
pathway for resolving the problem you have been asked to solve. But it is not enough to look for
structural similarities. Sometimes relying on similarities may even be misleading. Once you've settled
tentatively on what you take to be the heart of the matter, you will naturally look for materials,
whether evidence or arguments, that you believe is relevant to its potential solution. But the evidence
you investigate of course depends on your formulation of the problem, and your formulation of the
problem likely depends on the tools you have available - including potential sources of evidence and
argumentation. You cannot ignore this interactivity, but you can't allow yourself to be hamstrung
entirely by it. But there is more. The problem itself may be too big to be manageable all at once, so
you will have to explore whether it can be broken into manageable parts and if the information you
have bears on all or only some of those parts. And later you will face the problem of whether the
solutions to the particular sub problems can be put together coherently to solve the entire problem
taken as a whole.

What you are doing is what we call engaging in computational thinking. There are several elements of
computational thinking illustrated above. These include: Decomposition (breaking the larger problem

8.2.1

124

down into smaller ones); Pattern recognition (identifying structural similarities); Abstraction (ignoring
irrelevant particulars of the problem): and Creating Algorithms), problem-solving formulas.

But even more basic to what you are doing is the process of drawing inferences from the material you
have. After all, how else are you going to create a problem-solving formula, if you draw incorrect
inferences about what information has shown and what, if anything follows logically from it. What
you must do is apply the rules of logic to the information to draw inferences that are warranted.

We distinguish between informal and formal systems of logic, both of which are designed to indicate
fallacies as well as warranted inferences. If I argue for a conclusion by appealing to my physical ability
to coerce you, I prove nothing about the truth of what I claim. If anything, by doing so I display my
lack of confidence in my argument. Or if the best I can do is berate you for your skepticism, I have
done little more than offer an ad hominem instead of an argument. Our focus will be on formal
systems of logic, since they are at the heart of both scientific argumentation and computer developed
algorithms. There are in fact many different kinds of logic and all figure to varying degrees in scientific
inquiry. There are inductive types of logic, which purport to formalize the relationship between
premises that if true offer evidence on behalf of a conclusion and the conclusion and are represented
as claims about the extent to which the conclusion is confirmed by the premises. There are deductive
types of logic, which introduce a different relationship between premise and conclusion. These
variations of logic consist in rules that if followed entail that if the premises are true then the
conclusion too must be true.

There are also modal types of logic which are applied specifically to the concepts of necessity and
possibility, and thus to the relationship among sentences that include either or both those terms. And
there is also what are called deontic logic, a modification of logic that purport to show that there are
rules of inference that allow us to infer what we ought to do from facts about the circumstances in
which we find ourselves. In the natural and social sciences most of the emphasis has been placed on
inductive logic, whereas in math it is placed on deductive logic, and in modern physics there is an
increasing interest in the concepts of possibility and necessity and thus in modal logic. The humanities,
especially normative discussions in philosophy and literature are the province of deontic logic.

This module will also take students through the central aspects of computational thinking, as it is
related to logic; it will introduce the central concepts in each, their relationship to one another and
begin to provide the conceptual apparatus and practical skills for scientific inquiry and research.

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the various principles of logic and expand them to

computational thinking.
2 Understand Understand the way in which logical processes in humans and in

computers are similar and different at the same time.
3 Apply Apply the basic rules of first-order deductive logic and employ them

rules in the context of creating a scientific or social scientific study
and argument.

4 Employ Employ those rules in the context of creating a scientific or social
scientific study and argument.

Indicative Literature

125

• Frege, Gottlob (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens [Translation: A Formal Language for Pure Thought Modeled on that of
Arithmetic],Halle an der Salle: Verlag von Louis Nebert.

• Gödel, Kurt (1986), Russels mathematische Logik. In: Alfred North Whitehead, Bertrand
Russell: Principia Mathematica. Vorwort, S. V–XXXIV. Suhrkamp.

• Leeds, Stephen. "George Boolos and Richard Jeffrey. Computability and logic. Cambridge
University Press, New York and London1974, x+ 262 pp." The Journal of Symbolic Logic 42.4
(1977): 585-586.

• Kubica, Jeremy. Computational fairy tales. Jeremy Kubica, 2012.
• McCarthy, Timothy. "Richard Jeffrey. Formal logic: Its scope and limits. of XXXVIII 646.

McGraw-Hill Book Company, New York etc. 1981, xvi+ 198 pp." The Journal of Symbolic Logic
49.4 (1984): 1408-1409.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Logic (perspective I) Written
Examination

60
minutes

100 45% All

Module Achievements: None

I I I I

126

 Logic (perspective II)

Module Name Logic (perspective II)
Module Code 2025-CTNS-NSK-02
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 3

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Logic (perspective II) CTNS-02 Lecture (Online) 2.5

Module Description

The focus of this module is on formal systems of logic, since they are at the heart of both scientific
argumentation and computer developed algorithms. There are in fact many kinds of logic and all figure
to varying degrees in scientific inquiry. There are inductive types of logic, which purport to formalize
the relationship between premises that if true offer evidence on behalf of a conclusion and the
conclusion and are represented as claims about the extent to which the conclusion is confirmed by the
premises. There are deductive types of logic, which introduce a different relationship between
premise and conclusion. These variations of logic consist in rules that if followed entail that if the
premises are true then the conclusion too must be true.

This module introduces logics that go beyond traditional deductive propositional logic and predicate
logic and as such it is aimed at students who are already familiar with basics of traditional formal logic.
The aim of the module is to provide an overview of alternative logics and to develop a sensitivity that
there are many different logics that can provide effective tools for solving problems in specific
application domains.

The module first reviews the principles of a traditional logic and then introduces many-valued logics
that distinguish more than two truth values, for example true, false, and unknown. Fuzzy logic extends
traditional logic by replacing truth values with real numbers in the range 0 to 1 that are expressing how
strong the believe into a proposition is. Modal logics introduce modal operators expressing whether a
proposition is necessary or possible. Temporal logics deal with propositions that are qualified by time.
One can view temporal logics as a form of modal logics where propositions are qualified by time
constraints. Interval temporal logic provides a way to reason about time intervals in which propositions
are true.

8.2.2

127

The module will also investigate the application of logic frameworks to specific classes of problems.
For example, a special subset of predicate logic, based on so-called Horn clauses, forms the basis of
logic programming languages such as Prolog. Description logics, which are usually decidable logics, are
used to model relationships and they have applications in the semantic web, which enables search
engines to reason about resources present on the Internet.

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the various principles of logic.
2 Explain Explain practical relevance of non-standard logic.
3 Describe Describe how many-valued logic extends basic predicate logic.
4 Apply Apply basic rules of fuzzy logic to calculate partial truth values.
5 Sketch Sketch basic rules of temporal logic.
6 Implement Implement predicates in a logic programming language.
7 Prove Prove some simple non-standard logic theorems.

Indicative Literature

• Bergmann, Merry. “An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and
Derivation Systems”, Cambridge University Press, April 2008.

• Sterling, Leon S., Ehud Y. Shapiro, Ehud Y. "The Art of Prolog", 2nd edition, MIT Press, March
1994.

• Fisher, Michael. "An Introduction to Practical Formal Methods Using Temporal Logic", Wiley,
Juli 2011.

• Baader, Franz. "The Description Logic Handbook: Theory Implementation and Applications",
Cambridge University Press, 2nd edition, May 2010.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Logic (perspective II) Written
Examination

60
minutes

100 45% All

Module Achievements: None

128

 Causation and Correlation (perspective I)

Module Name Causation and Correlation (perspective I)
Module Code 2025-CTNS-NSK-03
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 4

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Causation and Correlation CTNS-03 Lecture (Online) 2.5

Module Description

In many ways, life is a journey. And also, as in other journeys, our success or failure depends not only
on our personal traits and character, our physical and mental health, but also on the accuracy of our
map. We need to know what the world we are navigating is actually like, the how, why and the what
of what makes it work the way it does. The natural sciences provide the most important tool we have
developed to learn how the world works and why it works the way it does. The social sciences provide
the most advanced tools we have to learn how we and other human beings, similar in most ways,
different in many others, act and react and what makes them do what they do. In order for our maps
to be useful, they must be accurate and correctly reflect the way the natural and social worlds work
and why they work as they do.

The natural sciences and social sciences are blessed with enormous amounts of data. In this way,
history and the present are gifts to us. To understand how and why the world works the way it does
requires that we are able to offer an explanation of it. The data supports a number of possible
explanations of it. How are we to choose among potential explanations? Explanations, if sound, will
enable us to make reliable predictions about what the future will be like, and also to identify many
possibilities that may unfold in the future. But there are differences not just in the degree of confidence
we have in our predictions, but in whether some of them are necessary future states or whether all of
them are merely possibilities? Thus, there are three related activities at the core of scientific inquiry:
understanding where we are now and how we got here (historical); knowing what to expect going
forward (prediction); and exploring how we can change the paths we are on (creativity).

At the heart of these activities are certain fundamental concepts, all of which are related to the
scientific quest to uncover immutable and unchanging laws of nature. Laws of nature are thought to

8.2.3

129

reflect a causal nexus between a previous event and a future one. There are also true statements that
reflect universal or nearly universal connections between events past and present that are not laws of
nature because the relationship they express is that of a correlation between events. A working
thermostat accurately allows us to determine or even to predict the temperature in the room in which
it is located, but it does not explain why the room has the temperature it has. What then is the core
difference between causal relationships and correlations? At the same time, we all recognize that
given where we are now there are many possible futures for each of us, and even had our lives gone
just the slightest bit differently than they have, our present state could well have been very different
than it is. The relationship between possible pathways between events that have not materialized but
could have is expressed through the idea of counterfactual.

Creating accurate roadmaps, forming expectations we can rely on, making the world a more verdant
and attractive place requires us to understand the concepts of causation, correlation, counterfactual
explanation, prediction, necessity, possibility, law of nature and universal generalization. This course
is designed precisely to provide the conceptual tools and intellectual skills to implement those
concepts in our future readings and research and ultimately in our experimental investigations, and to
employ those tools in various disciplines.

Intended Learning Outcomes

No Competence ILO
1 Formulate Formulate testable hypotheses that are designed to reveal causal

connections and those designed to reveal interesting, important and
useful correlations.

2 Distinguish Distinguish scientifically interesting correlations from unimportant
ones.

3 Apply Apply critical thinking skills to evaluate information.
4 Understand Understand when and why inquiry into unrealized possibility is

important and relevant.

Indicative Literature

• Thomas S. Kuhn: The Structure of Scientific Revolutions. Nelson, fourth edition, 2012.
• Goodman, Nelson. Fact, fiction, and forecast. Harvard University Press, 1983.
• Quine Willard, Van Orman, and Joseph Silbert Ullian. The web of belief. Vol 2. New York:

Random house, 1978.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

130

Causation and Correlation Written
Examination

60
minutes

100 45% 1-4

Module Achievements: None

131

 Causation and Correlation (perspective II)

Module Name Causa�on and Correla�on (perspec�ve II)
Module Code 2025-CTNS-NSK-04
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elec�ve status for:
- 2025-CS-BSc 4

Dura�on 1 Semester
Program Affilia�on 2025-CT ()
Module Coordinator(s) Dr. Eoin Ryan

Dr. Irina Chiaburu
Prof. Dr. Keivan Mallahi Karai

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Causa�on and Correla�on
(perspec�ve II)

CTNS-04 Lecture (Online) 2.5

Module Description

Causality or causa�on is a surprisingly difficult concept to understand. David Hume famously
noted that causality is a concept that our science and philosophy cannot do without, but it is
equally a concept that our science and philosophy cannot describe. Since Hume, the problem
of cause has not gone away, and some�mes seems to get even worse (e.g., quantum
mechanics confusing previous no�ons of causality). Yet, ways of doing science that lessen our
need to explicitly use causality have become very effec�ve (e.g., huge developments in
sta�s�cs). Nevertheless, it s�ll seems that the concept of causality is at the core of explaining
how the world works, across fields as diverse as physics, medicine, logis�cs, the law, sociology,
and history - and ordinary daily life - through all of which, explana�ons and predic�ons in terms
of cause and effect remain intui�vely central.

Causality remains a thorny problem but, in recent decades, significant progress has occurred,
par�cularly in work by or inspired by Judea Pearl. This work incorporates many 20th century
developments, including sta�s�cal methods - but with a reemphasis on finding the why, or the
cause, behind sta�s�cal correla�ons -, progress in understanding the logic, seman�cs and
metaphysics of condi�onals and counterfactuals, developments based on insights from the
likes of philosopher Hans Reichenbach or biological sta�s�cian Sewall Wright into causal

8.2.4

I I

132

precedence and path analysis, and much more. The result is a new toolkit to iden�fy causes
and build causal explana�ons. Yet even as we get beter at iden�fying causes, this raises new
(or old) ques�ons about causality, including metaphysical ques�ons about the nature of causes
(and effects, events, objects, etc), but also ques�ons about what we really use causality for
(understanding the world as it is or just to glean predic�ve control of specific outcomes), about
how causality is used differently in different fields and ac�vi�es (is cause in physics the same
as that in history?), and about how other crucial concepts relate to our concept of cause (space
and �me seem to be related to causality, but so do concepts of legal and moral responsibility).

This course will introduce students to the mathema�cal formalism derived from Pearl's work,
based on directed acyclic graphs and probability theory. Building upon previous work by
Reichenbach and Wright, Pearl defines a "a calculus of interven�ons" of "do-calculus" for
talking about interven�ons and their rela�on to causa�on and counterfactuals. This model has
been applied in various areas ranging from econometrics to sta�s�cs, where acquiring
knowledge about causality is of great importance.

At the same �me, the course will not forget some of the metaphysical and epistemological
issues around cause, so that students can beter cri�cally evaluate puta�ve causal explana�ons
in their full context. Abstractly, such issues involve some of the same philosophical ques�ons
Hume already asked, but more prac�cally, it is important to see how metaphysical and
epistemological debates surrounding the no�on of cause affect scien�fic prac�ce, and equally
if not more importantly, how scien�fic prac�ce pushes the limits of theory. This course will
look at various ways in which empirical data can be transformed into explana�ons and
theories, including the variance approach to causality (characteris�c of the posi�vis�c
quan�ta�ve paradigm), and the process theory of causality (associated with qualita�ve
methodology). Examples and case studies will be relevant for students of the social sciences
but also students of the natural/physical world as well.

Recommended Knowledge

Basic probability theory

Intended Learning Outcomes

No Competence ILO
1 Have Have a clear understanding of the history of causal thinking.
2 Form Form a critical understanding of the key debates and controversies

surrounding the idea of causality.
3 Recognize Recognize and apply probabilistic causal models.
4 Explain Explain how understanding of causality differs among different

disciplines.
5 Demonstrate Demonstrate how theoretical thinking about causality has shaped

scientific practices.

Indicative Literature

• Paul, L. A. and Ned Hall. Causa�on: A User’s Guide. Oxford University Press 2013.

133

• Pearl, Judea. Causality: Models, Reasoning and Inference. Cambridge University Press
2009.

• Pearl, Judea, Glymour Madelyn and Jewell, Nicolas. Causal Inference in Sta�s�cs: A
Primer. Wiley 2016.

• llari, Phyllis McKay and Federica Russo. Causality: Philosophical Theory Meets
Scien�fic Prac�ce. Oxford University Press 2014.

Entry Requirements

Prerequisites None
Co-requisites None
Addi�onal Remarks None

Assessment and Completion

Components Examina�on
Type

Dura�on
/Length

Weight
(%)

Minimu
m

ILOs

Causa�on and Correla�on
(perspec�ve II)

Writen
Examina�on

60
minutes

100 45% 1-5

Module Achievements: None

134

 Linear Model and Matrices

Module Name Linear Model and Matrices
Module Code 2025-CTNS-NSK-05
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 5

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Marc-Thorsten Hütt

Forms of Learning and Teaching
Independent Study 90

Online Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Linear model and matrices CTNS-05 Seminar (Online) 5

Module Description

There are no universal 'right skills'. But the notion of linear models and the avenue to matrices and
their properties can be useful in diverse disciplines to implement a quantitative, computational
approach. Some of the most popular data and systems analysis strategies are built upon this
framework. Examples include principal component analysis (PCA), the optimization techniques used in
Operations Research (OR), the assessment of stable and unstable states in nonlinear dynamical
systems, as well as aspects of machine learning.

Here we introduce the toolbox of linear models and matrix-based methods embedded in a wide range
of transdisciplinary applications (part 1). We describe its foundation in linear algebra (part 2) and the
range of tools and methods derived from this conceptual framework (part 3). At the end of the course,
we outline applications to graph theory and machine learning (part 4). Matrices can be useful
representations of networks and of system of linear equations. They are also the core object of linear
stability analysis, an approach used in nonlinear dynamics. Throughout the course, examples from
neuroscience, social sciences, medicine, biology, physics, chemistry, and other fields are used to
illustrate these methods.

A strong emphasis of the course is on the sensible usage of linear approaches in a nonlinear world. We
will critically reflect the advantages as well as the disadvantages and limitations of this method.
Guiding questions are: How appropriate is a linear approximation of a nonlinear system? What do you
really learn from PCA? How reliable are the optimal states obtained via linear programming (LP)
techniques?

8.2.5

135

This debate is embedded in a broader context: How does the choice of a mathematical technique
confine your view on the system at hand? How, on the other hand, does it increase your capabilities
of analyzing the system (due to software available for this technique, the ability to compare with
findings from other fields built upon the same technique and the volume of knowledge about this
technique)?

In the end, students will have a clearer understanding of linear models and matrix approaches in their
own discipline, but they will also see the full transdisciplinarity of this topic. They will make better
decisions in their choice of data analysis methods and become mindful of the challenges when going
from linear to nonlinear thinking.

Intended Learning Outcomes

No Competence ILO
1 Apply Apply the concept of linear modeling in their own discipline.
2 Distinguish Distinguish between linear and nonlinear interpretation strategies

and understand the range of applicability of linear models.
3 Make Make use of data analysis / data interpretation strategies from other

disciplines, which are derived from linear algebra.
4 Be Be aware of the ties that linear models have to machine learning and

network theory,
5 Note Note that these four ILOs can be loosely associated with the four

parts of the course indicated above.

Indicative Literature

• Part 1: material from Linear Algebra for Everyone, Gilbert Strang, Wellesley-Cambridge Press,
2020.

• Part 2: material from Introduction to Linear Algebra (5th Edition), Gilbert Strang, Cambridge
University Press, 2021.

• Part 3: Mainzer, Klaus. "Introduction: from linear to nonlinear thinking." Thinking in
Complexity: The Computational Dynamics of Matter, Mind and Mankind (2007): 1-16.;
material from Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs,
Jeremy Kepner, Hayden Jananthan, The MIT Press, 2018.; material from Introduction to Linear
Algebra (5th Edition), Gilbert Strang, Cambridge University Press, 2021.

• Part 4: material from Linear Algebra and Learning from Data, Gilbert Strang, Wellesley-
Cambridge Press, 2019.

Entry Requirements

Prerequisites Logic (perspective I)
Causation and Correlation (perspective I)
Causation and Correlation (perspective II)
Logic (perspective II)

Co-requisites None
Additional Remarks

Assessment and Completion

136

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Linear model and matrices Written
Examination

120
minutes

100 45% 1-4

Module Achievements: None

137

 Complex Problem Solving

Module Name Complex Problem Solving
Module Code 2025-CTNS-NSK-06
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 5

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Marco Verweij

Forms of Learning and Teaching
Independent Study 90

Online Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Complex Problem Solving CTNS-06 Lecture (Online) 5

Module Description

Complex problems are, by definition, non-linear and/or emergent. Some fifty years ago, scholars such
as Herbert Simon began to argue that societies around the world had developed an impressive array
of tools with which to solve simple and even complicated problems, but still needed to develop
methods with which to address the rapidly increasing number of complex issues. Since then, a variety
of such methods has emerged. These include 'serious games' developed in computer science,
'multisector systems analysis' applied in civil and environmental engineering, 'robust decision-making'
proposed by the RAND Corporation, 'design thinking' developed in engineering and business studies,
'structured problem-solving' used by McKinsey & Co., 'real-time technology assessment' advocated in
science and technology studies, and 'deliberative decision-making' emanating from political science.

In this course, students first learn to distinguish between simple, complicated and complex problems.
They also become familiar with the ways in which a particular issue can sometimes shift from one
category into another. In addition, the participants learn to apply several tools for resolving complex
problems. Finally, the students are introduced to the various ways in which natural and social scientists
can help stakeholders resolve complex problems. Throughout the course examples and applications
will be used. When possible, guest lectures will be offered by experts on a particular tool for tackling
complex issues. For the written, take-home exam, students will have to select a specific complex
problem, analyse it and come up with a recommendation - in addition to answering several questions
about the material learned.

Recommended Knowledge

- Being able to read primary academic literature

8.2.6

138

- Willingness to engage in teamwork

- Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106;

- Rogers, P. J. (2008). Using programme theory to evaluate complicated and complex aspects of
interventions. Evaluation, 14, 29–48.

Intended Learning Outcomes

No Competence ILO
1 Identify Identify a complex problem.
2 Develop Develop an acceptable recommendation for resolving complex

problems.
3 Understand Understand the roles that natural and social scientists can play in

helping stakeholders resolve complex problems.

Indicative Literature

• Camillus, J. (2008). Strategy as a wicked problem. Harvard Business Review 86: 99-106; Rogers,
P. J. (2008). Using programme theory to evaluate complicated and complex aspects of
interventions. Evaluation, 14, 29–48.

• Chia, A. (2019). Distilling the essence of the McKinsey way: The problem-solving cycle.
Management Teaching Review 4(4): 350-377.

• Den Haan, J., van der Voort, M.C., Baart, F., Berends, K.D., van den Berg, M.C., Straatsma,
M.W., Geenen, A.J.P., & Hulscher, S.J.M.H. (2020). The virtual river game: Gaming using models
to collaboratively explore river management complexity, Environmental Modelling & Software
134, 104855.

• Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C.S., & Walker, B. (2002). Resilience
and sustainable development: Building adaptive capacity in a world of transformations.
AMBIO: A Journal of the Human Environment 31(5): 437-440.

• Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic
systems. American Economic Review 100(3): 641-72.

• Pielke, R. Jr. (2007). The honest broker: Making sense of science in policy and politics.
Cambridge: Cambridge University Press.

• Project Management Institute (2021). A guide to the project management body of knowledge
(PMBOK® guide).

• Schon, D. A., & Rein, M. (1994). Frame reflection: Toward the resolution of intractable policy
controversies. New York: Basic Books.

• Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence 4(3-4): 181-
201.

• Verweij, M. & Thompson, M. (Eds.) (2006). Clumsy solutions for a complex world. London:
Palgrave Macmillan.

Entry Requirements

Prerequisites Logic (perspective I)
Causation and Correlation (perspective I)
Causation and Correlation (perspective II)
Logic (perspective II)

139

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Complex Problem Solving Written
Examination

120
minutes

100 45% 1-3

Module Achievements: None

I I I I

140

 Argumentation, Data Visualization and Communication (perspective I)

Module Name Argumentation, Data Visualization and
Communication (perspective I)

Module Code 2025-CTNS-NSK-07
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 5

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Arvid Kappas

Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 90

Online Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Argumentation, Data Visualization and
Communication (perspective I)

CTNS-07 Lecture (Online) 5

Module Description

One must be careful not to confuse argumentation with being argumentative. The latter is an
unattractive personal attribute, whereas the former is a requirement of publicly holding a belief,
asserting the truth of a proposition, the plausibility of a hypothesis, or a judgment of the value of a
person or an asset. It is an essential component of public discourse. Public discourse is governed by
norms and one of those norms is that those who assert the truth of a proposition or the validity of an
argument or the responsibility of another for wrongdoing open themselves up to good faith requests
to defend their claims. In its most general meaning, argumentation is the requirement that one offer
evidence in support of the claims they make, as well as in defense of the judgments and assessments
they reach. There are different modalities of argumentation associated with different contexts and
disciplines. Legal arguments have a structure of their own as do assessments of medical conditions
and moral character. In each case, there are differences in the kind of evidence that is thought relevant
and, more importantly, in the standards of assessment for whether a case has been successfully made.
Different modalities of argumentation require can call for different modes of reasoning. We not only
offer reasons in defense of or in support of beliefs we have, judgments we make and hypotheses we
offer, but we reason from evidence we collect to conclusions that are warranted by them.

Reasoning can be informal and sometimes even appear unstructured. When we recognize some
reasoning as unstructured yet appropriate what we usually have in mind is that it is not linear. Most
reasoning we are familiar with is linear in character. From A we infer B, and from A and B we infer C,

8.2.7

I I

141

which all together support our commitment to D. The same form of reasoning applies whether the
evidence for A, B or C is direct or circumstantial. What changes in these cases is perhaps the weight
we give to the evidence and thus the confidence we have in drawing inferences from it.

Especially in cases where reasoning can be supported by quantitative data, wherever quantitative data
can be obtained either directly or by linear or nonlinear models, the visualization of the corresponding
data can become key in both, reasoning and argumentation. A graphical representation can reduce
the complexity of argumentation and is considered a must in effective scientific communication.
Consequently, the course will also focus on smart and compelling ways for data visualization - in ways
that go beyond what is typically taught in statistics or mathematics lectures. These tools are constantly
developing, as a reflection of new software and changes in state of the presentation art. Which graph
or bar chart to use best for which data, the use of colors to underline messages and arguments, but
also the pitfalls when presenting data in a poor or even misleading manner. This will also help in readily
identifying intentional mis-representation of data by others, the simplest to recognize being truncating
the ordinate of a graph in order to exaggerate trends. This frequently leads to false arguments, which
can then be readily countered.

There are other modalities of reasoning that are not linear however. Instead they are coherentist. We
argue for the plausibility of a claim sometimes by showing that it fits in with a set of other claims for
which we have independent support. The fit is itself the reason that is supposed to provide confidence
or grounds for believing the contested claim.

Other times, the nature of reasoning involves establishing not just the fit but the mutual support
individual items in the evidentiary set provide for one another. This is the familiar idea of a web of
interconnected, mutually supportive beliefs. In some cases, the support is in all instances strong; in
others it is uniformly weak, but the set is very large; in other cases, the support provided each bit of
evidence for the other is mixed: sometimes strong, sometimes weak, and so on.

There are three fundamental ideas that we want to extract from this segment of the course. These are
(1) that argumentation is itself a requirement of being a researcher who claims to have made findings
of one sort or another; (2) that there are different forms of appropriate argumentation for different
domains and circumstances; and (3) that there are different forms of reasoning on behalf of various
claims or from various bits of evidence to conclusions: whether those conclusions are value judgments,
political beliefs, or scientific conclusions. Our goal is to familiarize you with all three of these deep
ideas and to help you gain facility with each.

Intended Learning Outcomes

No Competence ILO
1 Distinguish Distinguish among different modalities of argument, e.g. legal

arguments, vs. scientific ones.
2 Construct Construct arguments using tools of data visualization.
3 Communicate Communicate conclusions and arguments concisely, clearly and

convincingly.

Indicative Literature

• Tufte, E.R. (1985). The visual display of quantitative information. The Journal for Healthcare
Quality (JHQ), 7(3), 15.

142

• Cairo, A (2012). The Functional Art: An introduction to information graphics and visualization.
New Ridders.

• Knaflic, C.N. (2015). Storytelling with data: A data visualization guide for business
professionals. John Wiley & Sons.

Entry Requirements

Prerequisites Logic (perspective I)
Causation and Correlation (perspective I)
Causation and Correlation (perspective II)
Logic (perspective II)

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Argumentation, Data
Visualization and
Communication
(perspective I)

Written
Examination

120
minutes

100 45% 1-3

Module Achievements: None

143

 Argumentation, Data Visualization and Communication (perspective II)

Module Name Argumentation, Data Visualization and
Communication (perspective II)

Module Code 2025-CTNS-NSK-08
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Arvid Kappas

Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 80

Online Lecture 35
Tutorial 10

Workload Hours 125 hours

Module Components Number Type CP
Argumentation, Data Visualization and
Communication (perspective II)

CTNS-08 Lecture (Online) 5

Module Description

Humans are a social species, and interaction is crucial throughout the entire life span. While much of
human communication involves language, there is a complex multichannel system of nonverbal
communication that enriches linguistic content, provides context, and is also involved in structuring
dynamic interaction. Interactants achieve goals by encoding information that is interpreted in the light
of current context in transactions with others. This complexity implies also that there are frequent
misunderstandings as a sender's intention is not fulfilled. Students in this course will learn to
understand the structure of communication processes in a variety of formal and informal contexts.
They will learn what constitutes challenges to achieving successful communication and to how to
communicate effectively, taking the context and specific requirements for a target audience into
consideration. These aspects will be discussed also in the scientific context, as well as business, and
special cases, such as legal context - particularly with view to argumentation theory.

Communication is a truly transdisciplinary concept that involves knowledge from diverse fields such as
biology, psychology, neuroscience, linguistics, sociology, philosophy, communication and information
science. Students will learn what these different disciplines contribute to an understanding of
communication and how theories from these fields can be applied in the real world. In the context of
scientific communication, there will also be a focus on visual communication of data in different

8.2.8

I I

144

disciplines. Good practice examples will be contrasted with typical errors to facilitate successful
communication also with view to the Bachelor's thesis.

Recommended Knowledge

- Ability and openness to engage in interactions

- Media literacy, critical thinking and a proficient handling of data sources

- Own research in academic literature

Intended Learning Outcomes

No Competence ILO
1 Analyze Analyze communication processes in formal and informal contexts.
2 Identify Identify challenges and failures in communication.
3 Design Design communications to achieve specified goals to specific target

groups.
4 Understand Understand the principles of argumentation theory.
5 Use Use data visualization in scientific communications.

Indicative Literature

• Joseph A. DeVito: The Interpersonal Communication Book (Global edition, 16th edition), 2022.
• Steven L. Franconeri, Lace M. Padilla, Priti Shah, Jeffrey M. Zacks, and Jessica Hullman: The

Science of Visual Data Communication: What Works Psychological Science in the Public
Interest, 22(3), 110–161, 2022.

• Douglas Walton: Argumentation Theory – A Very Short Introduction. In: Simari, G., Rahwan, I.
(eds) Argumentation in Artificial Intelligence. Springer, Boston, MA, 2009.

Entry Requirements

Prerequisites Logic (perspective I)
Logic (perspective II)
Causation and Correlation (perspective I)
Causation and Correlation (perspective II)

Co-requisites None
Additional Remarks

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Argumentation, Data
Visualization and
Communication
(perspective II)

Presentation Digital
submissi
on
(Asynchr
onous)

100 45% 1-5

145

Module Achievements: Asynchronous presentation on a topic relating to the major of the student,
including a reflection including concept outlining the rationale for how arguments are selected and
presented based on a particular target group for a particular purpose. The presentation shall be
multimedial and include the presentation of data. The module achievement ensures sufficient
knowledge about key concepts of effective communication including a reflection on the presentation
itself.

146

 Agency, Leadership, and Accountability

Module Name Agency, Leadership, and Accountability
Module Code 2025-CTNS-NSK-09
Module ECTS 5
Study Semester Mandatory status for:

- 2025-S-ACS-BSc 5

Mandatory Elective status for:
- 2025-CS-BSc 6

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Prof. Dr. Jules Coleman

Forms of Learning and Teaching
Independent Study 90

Online Lecture 35
Workload Hours 125 hours

Module Components Number Type CP
Agency, Leadership, and
Accountability

CTNS-09 Lecture (Online) 5

Module Description

Each of us is judged by the actions we undertake and held to account for the consequences of them.
Sometimes we may be lucky and our bad acts don't have harmful effects on others. Other times we
may be unlucky and reasonable decisions can lead to unexpected or unforeseen adverse consequences
for others. We are therefore held accountable both for choices and for outcomes. In either case,
accountability expresses the judgment that we bear responsibility for what we do and what happens
as a result. But our responsibility and our accountability in these cases is closely connected to the idea
that we have agency.

Agency presumes that we are the source of the choices we make and the actions that result from those
choices. For some, this may entail the idea that we have free will. But there is scientific world view
that holds that all actions are determined by the causes that explain them, which is the idea that if we
knew the causes of your decisions in advance, we would know the decision you would make even
before you made it. If that is so, how can your choice be free? And if it is not free, how can you be
responsible for it? And if you cannot be responsible, how can we justifiably hold you to account for it?

These questions express the centuries old questions about the relationship between free will and a
determinist world view: for some, the conflict between a scientific world view and a moral world view.

But we do not always act as individuals. In society we organize ourselves into groups: e.g. tightly
organized social groups, loosely organized market economies, political societies, companies, and more.
These groups have structure. Some individuals are given the responsibility of leading the group and of

8.2.9

I I

147

exercising authority. But one can exercise authority over others in a group merely by giving orders
and threatening punishment for non-compliance.

Exercising authority is not the same thing as being a leader? For one can lead by example or by
encouraging others to exercise personal judgment and authority. What then is the essence of
leadership?

The module has several educational goals. The first is for students to understand the difference
between actions that we undertake for which we can reasonably held accountable and things that we
do but which we are not responsible for. For example, a twitch is an example of the latter, but so too
may be a car accident we cause as a result of a heart attack we had no way of anticipating or
controlling. This suggests the importance of control to responsibility. At the heart of personal agency
is the idea of control. The second goal is for students to understand what having control means. Some
think that the scientific view is that the world is deterministic, and if it is then we cannot have any
personal control over what happens, including what we do. Others think that the quantum scientific
view entails a degree of indeterminacy and that free will and control are possible, but only in the sense
of being unpredictable or random. But then random outcomes are not ones we control either. So, we
will devote most attention to trying to understand the relationships between control, causation and
predictability.

But we do not only exercise agency in isolation. Sometimes we act as part of groups and organizations.
The law often recognizes ways in which groups and organizations can have rights, but is there a way in
which we can understand how groups have responsibility for outcomes that they should be
accountable for. We need to figure out then whether there is a notion of group agency that does not
simply boil down to the sum of individual actions. We will explore the ways in which individual actions
lead to collective agency.

Finally we will explore the ways in which occupying a leadership role can make one accountable for
the actions of others over which one has authority.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand and reflect how the social and moral world views that

rely on agency and responsibility are compatible, if they are, with
current scientific world views.

2 Understand Understand how science is an economic sector, populated by large
powerful organizations that set norms, fund research agendas.

3 Identify Identify the difference between being a leader of others or of a
group - whether a research group or a lab or a company - and being
in charge of the group.

4 Learn Learn to be a leader of others and groups. Understand that when
one graduates one will enter not just a field of work but a heavily
structured set of institutions and that one's agency and
responsibility for what happens, what work gets done, its quality
and value, will be affected accordingly.

Indicative Literature

148

• Hull, David L. "Science as a Process." Science as a Process. University of Chicago Press, 2010.
• Feinberg, Joel. "Doing & deserving; essays in the theory of responsibility." (1970).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Agency, Leadership, and
Accountability

Written
Examination

120
minutes

100 45% 1-4

Module Achievements: None

I I I I

149

 Community Impact Project

Module Name Community Impact Project
Module Code 2025-CTNS-CIP-10
Module ECTS 5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 6

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) CIP Faculty Coordinator

Forms of Learning and Teaching
Introductory, Accompanying, and Final

Events
10

Self-Organized Teamwork 115
Workload Hours 125 hours

Module Components Number Type CP
Community Impact Project CTNS-10 Project 5

Module Description

CIPs are self-organized, major-related, and problem-centered applications of students' acquired
knowledge and skills. These activities will ideally be connected to their majors so that they will
challenge the students' sense of practical relevance and social responsibility within the field of their
studies. Projects will tackle real issues in their direct and/or broader social environment. These projects
ideally connect the campus community to other communities, companies, or organizations in a
mutually beneficial way.

Students are encouraged to create their own projects and find partners (e.g., companies, schools,
NGOs), but will get help from the CIP faculty coordinator team and faculty mentors to do so. They can
join and collaborate in interdisciplinary groups that attack a given issue from different disciplinary
perspectives.

Student activities are self-organized but can draw on the support and guidance of both faculty and the
CIP faculty coordinator team.

Usability and Relationship to other Modules

Students who have accomplished their CIP (6th semester) are encouraged to support their fellow
students during the development phase of the next year's projects (4th semester).

Recommended Knowledge

- Basic knowledge of the main concepts and methodological instruments of the respective disciplines.

8.2.10

150

- Develop or join a community impact project before the 5th or 6th semester based on the introductory
events during the 4th semester by using the database of projects, communicating with fellow students
and faculty, and finding potential companies, organizations, or communities to target.

Intended Learning Outcomes

No Competence ILO
1 The The Community Impact Project is designed to convey the required

personal and social competencies for enabling students to finish
their studies at Constructor University as socially conscious and
responsible graduates (part of the Constructor University's mission)
and to convey social and personal abilities to the students, including
a practical awareness of the societal context and relevance of their
academic discipline.

2 Understand Understand the real-life issues of communities, organizations, and
industries and relate them to concepts in their own discipline.

3 Enhance Enhance problem-solving skills and develop critical faculty, create
solutions to problems, and communicate these solutions
appropriately to their audience.

4 Apply Apply media and communication skills in diverse and non-peer social
contexts.

5 Develop Develop an awareness of the societal relevance of their own
scientific actions and a sense of social responsibility for their social
surroundings.

6 Reflect Reflect on their own behavior critically in relation to social
expectations and consequences.

7 Work Work in a team and deal with diversity, develop cooperation and
conflict skills, and strengthen their empathy and tolerance for
ambiguity.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks At least 15 CP from CORE modules in the

major.

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Community Impact Project Project
Assessment

 100 Graded
as
pass/fail

All

Module Achievements: None

151

8.3 Language and Humanities Modules

 Languages

The descriptions of the language modules are provided in a separate document, the “Language Module
Handbook” that can be accessed from the Constructor University’s Language & Community Center
internet sites (https://constructor.university/student-life/language-community-center/learning-
languages).

8.3.1

152

 Humanities

8.3.2.1 Introduction to the Philosophy of Science

Module Name Introduction to the Philosophy of Science
Module Code 2025-CTHU-HUM-002
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 1
- 2025-CS-BSc 2

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Dr. Eoin Ryan

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Introduction to the Philosophy of
Science

CTHU-002 Lecture (Online) 2.5

Module Description

This humanities module will introduce students to some of the central ideas in philosophy of science.
Topics will include distinguishing science from pseudo-science, types of inference and the problem of
induction, the pros and cons of realism and anti-realism, the role of explanation, the nature of scientific
change, the difference between natural and social sciences, scientism and the values of science, as
well as some examples from philosophy of the special sciences (e.g., physics, biology).

The course aims to give students an understanding of how science produces knowledge, and some of
the various contexts and issues which mean this process is never entirely transparent, neutral, or
unproblematic. Students will gain a critical understanding of science as a human practice and
technology; this will enable them both to better understand the importance and success of science,
but also how to properly critique science when appropriate.

Intended Learning Outcomes

No Competence ILO
1 Understand Understand key ideas from the philosophy of science.
2 Discuss Discuss different types of inference and rational processes.

8.3.2

I I

153

3 Describe Describe differences between how the natural sciences, social
sciences and humanities discover knowledge.

4 Identify Identify ways in which science can be more and less value-laden.
5 Illustrate Illustrate some important conceptual leaps in the history of science.

Indicative Literature

• Peter Godfrey-Smith Theory and Reality (2021)
• James Ladyman, Understanding Philosophy of Science (2002).
• Paul Song, Philosophy of Science: Perspectives from Scientists (2022).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Introduction to the
Philosophy of Science

Written
Examination

60
minutes

100 45% 1-5

Module Achievements: None

I I

I I I I

154

8.3.2.2 Introduction to Philosophical Ethics

Module Name Introduction to Philosophical Ethics
Module Code 2025-CTHU-HUM-001
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 1
- 2025-CS-BSc 2

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Dr. Eoin Ryan

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Introduction to Philosophical Ethics CTHU-001 Lecture (Online) 2.5

Module Description

The nature of morality - how to lead a life that is good for yourself, and how to be good towards others
- has been a central debate in philosophy since the time of Socrates, and it is a topic that continues to
be vigorously discussed. This course will introduce students to some of the key aspects of philosophical
ethics, including leading normative theories of ethics (e.g. consequentialism or utilitarianism,
deontology, virtue ethics, natural law ethics, egoism) as well as some important questions from
metaethics (are useful and generalizable ethical claims even possible; what do ethical speech and
ethical judgements actually do or explain) and moral psychology (how do abstract ethical principles do
when realized by human psychologies). The course will describe ideas that are key factors in ethics
(free will, happiness, responsibility, good, evil, religion, rights) and indicate various routes to progress
in understanding ethics, as well as some of their difficulties.

Intended Learning Outcomes

No Competence ILO
1 Describe Describe normative ethical theories such as consequentialism,

deontology and virtue ethics.
2 Discuss Discuss some metaethical concerns.
3 Analyze Analyze ethical language.
4 Highlight Highlight complexities and contradictions in typical ethical

commitments.

155

5 Indicate Indicate common parameters for ethical discussions at individual
and social levels.

6 Analyze Analyze notions such as objectivity, subjectivity, universality,
pluralism, value.

Indicative Literature

• Simon Blackburn Being Good (2009).
• Russ Shafer-Landay A Concise Introduction to Ethics (2019).
• Mark van Roojen Metaethicas: A Contemporary Introduction (2015).

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Introduction to
Philosophical Ethics

Written
Examination

60
minutes

100 45% 1-6

Module Achievements: None

I I I I

156

8.3.2.3 Introduction to Visual Culture

Module Name Introduction to Visual Culture
Module Code 2025-CTHU-HUM-003
Module ECTS 2.5
Study Semester Mandatory status for:

None

Mandatory Elective status for:
- 2025-CS-BSc 1
- 2025-CS-BSc 2

Duration 1 Semester
Program Affiliation 2025-CT ()
Module Coordinator(s) Dr. Irina Chiaburu

Forms of Learning and Teaching
Independent Study 45

Online Lecture 17.5
Workload Hours 62.5 hours

Module Components Number Type CP
Introduction to Visual Culture CTHU-003 Lecture (Online) 2.5

Module Description

Of the five senses, the sense of sight has for a long time occupied the central position in human
cultures. As John Berger has suggested this could be because we can see and recognize the world
around us before we learn how to speak. Images have been with us since the earliest days of the
human history. In fact, the earliest records of human history are images found on cave walls across the
world. We use images to capture abstract ideas, to catalogue and organize the world, to represent the
world, to capture specific moments, to trace time and change, to tell stories, to express feelings, to
better understand, to provide evidence and more. At the same time, images exert their power on us,
seducing us into believing in their 'innocence', that is into forgetting that as representations they are
also interpretations, i.e., a particular version of the world.

The purpose of this course is to explore multiple ways in which images and the visual in general
mediate and structure human experiences and practices from more specialized discourses, e.g.,
scientific discourses, to more informal and personal day-to-day practices, such as self-fashioning in
cyberspace. We will look at how social and historical contexts affect how we see, as well as what is
visible and what is not. We will explore the centrality of the visual to the intellectual activity, from early
genres of scientific drawing to visualizations of big data. We will examine whether one can speak of
visual culture of protest, look at the relationship between looking and subjectivity and, most
importantly, ponder the relationship between the visual and the real.

Intended Learning Outcomes

No Competence ILO

157

1 Understand Understand a range of key concepts pertaining to visual culture, art
theory and cultural analysis.

2 Understand Understand the role visuality plays in development and
maintenance of political, social, and intellectual discourses.

3 Think Think critically about images and their contexts.
4 Reflect Reflect critically on the connection between seeing and knowing.

Indicative Literature

• Berger, J., Blomberg, S., Fox, C., Dibb, M., & Hollis, R. (1973). Ways of seeing.
• Foucault, M. (2002). The order of things: an archaeology of the human sciences (Ser. Routledge

classics). Routledge.
• Hunt, L. (2004). Politics, culture, and class in the French revolution: twentieth anniversary

edition, with a new preface (Ser. Studies on the history of society and culture, 1). University
of California Press.

• Miller, V. (2020). Understanding digital culture (Second). SAGE.
• Thomas, N. (1994). Colonialism's culture: anthropology, travel and government. Polity Press.

Entry Requirements

Prerequisites None
Co-requisites None
Additional Remarks None

Assessment and Completion

Components Examination
Type

Duration
/Length

Weight
(%)

Minimu
m

ILOs

Introduction to Visual
Culture

Written
Examination

60
minutes

100 45% 1-4

Module Achievements: None

158

9 Appendix

9.1 Intended Learning Outcomes Assessment-Matrix

M
at

he
m

at
ic

al
 F

ou
nd

at
io

ns
 o

f C
om

pu
te

r S
ci

en
ce

Di
gi

ta
l S

ys
te

m
s a

nd
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

Pr
og

ra
m

m
in

g
in

 C
 a

nd
 C

++

Al
go

rit
hm

s a
nd

 D
at

a
St

ru
ct

ur
es

De
ve

lo
pm

en
t i

n
JV

M
 L

an
gu

ag
es

Da
ta

ba
se

s

So
ft

w
ar

e
En

gi
ne

er
in

g

O
pe

ra
tin

g
Sy

st
em

s

Au
to

m
at

a,
 C

om
pu

ta
bi

lit
y,

 a
nd

 C
om

pl
ex

ity

Fu
nc

tio
na

l P
ro

gr
am

m
in

g

Le
ga

l a
nd

 E
th

ic
al

 A
sp

ec
ts

 o
f C

om
pu

te
r S

ci
en

ce

M
ac

hi
ne

 L
ea

rn
ig

Ac
ad

em
ic

 S
ki

lls
 in

 C
om

pu
te

r S
ci

en
ce

Co
m

pu
te

r G
ra

ph
ic

s

 Im
ag

e
Pr

oc
es

sin
g

Di
st

rib
ut

ed
 A

lg
or

ith
m

s

W
eb

 A
pp

lic
at

io
n

De
ve

lo
pm

en
t

Co
m

pu
te

r N
et

w
or

ks

Se
cu

re
 a

nd
 D

ep
en

da
bl

e
Sy

st
em

s

Ba
ch

el
or

 T
he

sis

El
em

en
ts

 o
f L

in
ea

r A
lg

eb
ra

El
em

en
ts

 o
f C

al
cu

lu
s

Pr
ob

ab
ili

ty
 a

nd
 R

an
do

m
 P

ro
ce

ss
es

N
um

er
ic

al
 M

et
ho

ds
/S

ta
tis

tic
s a

nd
 D

at
a

An
al

yt
ic

s

In
te

rn
sh

ip

CT
 N

ew
 S

ki
lls

CT
 G

er
m

an
 la

ng
ua

ge
 a

nd
 H

um
an

iti
es

Semester 1 2 1 2 2 3 4 3 4 3 3 4 4 5 6 6 6 5 6 6 1 2 3 4 5 3-6 1-2
Mandatory/mandatory elective m m m m me m m m m me me me me me me me me me me m me me m me m m me
Credits 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5 2.5 5 2.5 5 5 5 5 5 5 15 5 5 5 5 15 20 5

Program Learning Outcomes A E P S
Work professionally in the highly dynamic computer
science field and enter graduate programs related to
computer science.

x x

Apply fundamental concepts of computer science
while solving problems.

x x

Think in an analytic way at multiple levels of
abstraction.

x x

Develop, analyze and implement algorithms using
modern software engineering methods.

x x x x x x x x x x x x x

Understand the characteristics of a range of
computing platforms and their advantages and
limitations.

x x x x x x x x x x

Choose from multiple programming paradigms,
languages and algorithms in order to solve a given
problem adequately.

x x x x x x x x x x x x x x x x x

Describe the fundamental theory of computation and
computability.

x x x x

Apply the necessary mathematical methods. x x x x x x
Recognize the context in which computer systems
operate, including interactions with people and the
physical world.

x x x x x x x x x x x x x x x x x

Describe the state of published knowledge in their
field or a specialization within it.

x x x x x x x x x x x x x x x x x

Analyze and model real-life scenarios in
organizations and industries using contemporary
techniques of computer science, also taking methods
and insights of other disciplines into account.

x x x x x x x x x x x x x x x x x

Appropriately communicate solutions of problems in
computer science in both spoken and written form to
specialists and non-specialists.

x x x x x x x x x

Draw scientifically-founded conclusions that consider
social, professional, scientific and ethical aspects. x

Work effectively in a diverse team and take
responsibility in a team.

x x x x x x x x

Take responsibility for their own learnig, personal
and professional development and role in society,
reflecting on their practice and evaluating critical
feedback.

x x x x x

Adhere to and defend ethical, scientific and
professional standards.

x x x x x x x x x x x

Assessment Type
Written examination x
Term paper
Essay x
Project report x
Poster presentation x
Laboratory report
Program Code x x x
Oral examination x
Presentation x x x
Practical Assessments
Project Assessment x x x x x
Portfolio Assessments
Bachelor Thesis x
Module achievements x x x x

Competencies*

*Competencies: A-scientific/academic proficiency; E-competence for qualified employment; P-development of personality; S-competence for engagement in society

Computer Science (BSc.)

,~
,~

	1 Program Overview
	1.1 Concept
	1.1.1 The Constructor University Educational Concept
	1.1.2 Program Concept

	1.2 Specific Advantages of Computer Science at Constructor University
	1.3 Program-Specific Educational Aims
	1.3.1 Qualification Aims
	1.3.2 Intended Learning Outcomes

	1.4 Career Options and Support
	1.5 Admission Requirements
	1.6 More Information and contacts

	2 The Curricular Structure
	2.1 General
	2.2 The Constructor University 4C Model
	2.2.1 Year 1 – CHOICE
	2.2.2 Year 2 – CORE
	2.2.3 Year 3 – CAREER
	2.2.3.1 Internship / Start-up and Career Skills Module
	2.2.3.2 Specialization Modules
	2.2.3.3 Specializations
	2.2.3.4 Study Abroad
	2.2.3.5 Bachelor Thesis/Seminar Module

	2.3 The CONSTRUCTOR Track
	2.3.1 Methods Modules
	2.3.2 New Skills Modules
	2.3.3 German Language and Humanities Modules

	3 Computer Science as a Minor
	3.1 Qualification Aims
	3.1.1 Intended Learning Outcomes

	3.2 Module Requirements
	3.3 Degree

	4 Computer Science Undergraduate Program Regulations
	4.1 Scope of these Regulations
	4.2 Degree
	4.3 Graduation Requirements

	5 Schematic Study Plan for Computer Science
	6 Study and Examination Plan
	7 Computer Science Modules
	7.1 Programming in C and C++
	7.2 Algorithms and Data Structures
	7.3 Mathematical Foundations of Computer Science
	7.4 Digital Systems and Computer Architecture
	7.5 Development in JVM Languages
	7.6 Databases
	7.7 Software Engineering
	7.8 Operating Systems
	7.9 Machine Learning
	7.10 Functional Programming
	7.11 Automata, Computability, and Complexity
	7.12 Legal and Ethical Aspects of Computer Science
	7.13 Academic Skills in Computer Science
	7.14 Computer Networks
	7.15 Secure and Dependable Systems
	7.16 Security Monitoring and Incident Response
	7.17 Ethical Hacking and Offensive Security
	7.18 Advanced Operating Systems
	7.19 Linux Kernel Internals
	7.20 Computer Graphics
	7.21 Image Processing
	7.22 Distributed Algorithms
	7.23 Web Application Development
	7.24 Computer Vision
	7.25 Human Computer Interaction
	7.26 Artificial Intelligence
	7.27 Robotics
	7.28 Digital Design
	7.29 Information Theory
	7.30 Internship / Startup and Career Skills
	7.31 Bachelor Thesis and Seminar CS

	8 Constructor Track Modules
	8.1 Methods Modules
	8.1.1 Elements of Linear Algebra
	8.1.2 Elements of Calculus
	8.1.3 Probability and Random Processes
	8.1.4 Statistics and Data Analytics
	8.1.5 Numerical Methods
	8.1.6 Matrix Algebra and Advanced Calculus I
	8.1.7 Matrix Algebra and Advanced Calculus II

	8.2 New Skills
	8.2.1 Logic (perspective I)
	8.2.2 Logic (perspective II)
	8.2.3 Causation and Correlation (perspective I)
	8.2.4 Causation and Correlation (perspective II)
	8.2.5 Linear Model and Matrices
	8.2.6 Complex Problem Solving
	8.2.7 Argumentation, Data Visualization and Communication (perspective I)
	8.2.8 Argumentation, Data Visualization and Communication (perspective II)
	8.2.9 Agency, Leadership, and Accountability
	8.2.10 Community Impact Project

	8.3 Language and Humanities Modules
	8.3.1 Languages
	8.3.2 Humanities
	8.3.2.1 Introduction to the Philosophy of Science
	8.3.2.2 Introduction to Philosophical Ethics
	8.3.2.3 Introduction to Visual Culture

	9 Appendix
	9.1 Intended Learning Outcomes Assessment-Matrix

